

Integration by Parts Quiz

A general method of integration is integration by parts. The pattern is given by:

MULTIPLE CHOICE

Identify the letter of the choice that best completes the statement, or answers the question:

1. If the integrand involves a logarithm, an inverse trigonometric function, or a tough

function to integrate whose derivative is easily calculated, that function should be:

AD the dv in ∫udv BD the u in ∫uo	B the u in ∫udv
-----------------------------------	-----------------

2. If the integrand involves a polynomial multiplied by a sine or a cosine, an exponential function, or some easily-integrated function, the polynomial should be:

A	the dv in	∫udv	B	the u in	lud
---	-----------	------	---	----------	-----

- 3. Integration by parts is called that because
- **C** the technique only performs a part of it is the inverse of the Product Rule for differentiation the original integration **D** it is the inverse of the Chain Rule for B the integrand is split into parts differentiation 4. Complete: $\int x \sin x \, dx = \sin x - \underline{\qquad} + c$, where c is a constant x cos x **D** none of the above B sin² x 5. Complete: $\int x \cos x \, dx = \cos x + \dots + c$, where c is a constant sin x **D** none of the above B x sin x 6. Complete: $\int x \cos 2x \, dx = \frac{x}{2} \sin 2x + \dots + c$, where c is a constant $\boxed{\textbf{C}} \quad \frac{1}{4}\cos 2x$ $\cos 2x$ D none of the above 2 cos x

This work is licensed under a Creative Commons Attribution 4.0 International License

SOLUTIONS					
1. B	2. A	3. C	4. A	5. B	
6. C	7. C	8. A	9. B	10. C	
11. B					

