Integration by Parts Quiz

A general method of integration is integration by parts. The pattern is given by:

$$
\int u d v=u v-\int v d u
$$

MULTIPLE CHOICE

Identify the letter of the choice that best completes the statement, or answers the question:

1. If the integrand involves a logarithm, an inverse trigonometric function, or a tough function to integrate whose derivative is easily calculated, that function should be:
A the $d v$ in $\int u d v$
(B) the u in $\int u d v$
2. If the integrand involves a polynomial multiplied by a sine or a cosine, an exponential function, or some easily-integrated function, the polynomial should be:
A the $d v$ in $\int u d v$
B the u in $\int u d v$
3. Integration by parts is called that because
Δ it is the inverse of the Product Rule for differentiation
(C) the technique only performs a part of the original integration
(B) the integrand is split into parts
(D) it is the inverse of the Chain Rule for
4. Complete: $\int x \sin x d x=\sin x-$ \qquad +c , where c is a constant
A $x \cos x$
(C) x
(B) $\sin ^{2} x$
(D) none of the above
5. Complete: $\int x \cos x d x=\cos x+\ldots+c$, where c is a constant
(A) $\sin x$
(C) x
(B) $x \sin x$
(D) none of the above
6. Complete: $\int x \cos 2 x d x=\frac{x}{2} \sin 2 x+\ldots+c$, where c is a constant
(A) $\cos 2 x$
(C) $\frac{1}{4} \cos 2 x$
(B) $2 \cos x$
(D) none of the above
7. Complete: $\int x^{2} \cos x d x=$ \qquad $+2 x \cos x-2 \sin x+c$, where c is a constant
(A) $x^{2} \cos x$
(C) $x^{2} \sin x$
(B) $\sin ^{2} x$
(D) none of the above
8. Complete: $\int x^{2} \ln x d x=_-\frac{x^{3}}{9}+c$, where c is a constant
(A) $\frac{x^{3}}{3} \ln x$
(C) $\frac{1}{x}$
(B) $\ln x$
(D) none of the above
9. Complete: $\int \ln x d x=$ \qquad $-x+c$, where c is a constant
A x
(C) $\ln x$
(B) $x \ln x$
(D) none of the above
10. Complete: $\int x^{3} e^{x} d x=($ \qquad) $\cdot e^{x}+c$, where c is a constant
(A) x^{3}
(C) $x^{3}-3 x^{2}+6 x-6$
(B) $x^{3}+3 x^{2}-6 x+6$
(D) none of the above

Bonus:

11. Complete: $\int \cos ^{2} x d x=\ldots+\frac{x}{2}+c$, where c is a constant
(A) x^{2}
(C) $\sin ^{2} x$
(B) $\frac{\cos x \sin x}{2}$
(D) none of the above

SOLUTIONS

1. B
2. A
3. C
4. A
5. B
6. C
7. C
8. A
9. B
10. C
11. B
