Easy Integrals (That Don't Look Easy)

Sometimes it is possible to simplify a function in an integral before you integrate it, making a difficult problem into a simple one.

Example 1: Evaluate the integrals: a) $\int\left(x^{4}-5\right)^{2} d x \quad$ b) $\int\left(x^{3}+x\right)\left(2 x^{2}-4\right) d x$
c) $\int \frac{x^{3}+4 x-3}{x} d x$
d) $\int \cos x \tan ^{2} x+\cos x d x$
e) $\int \frac{1}{e^{2 x}} d x$

Solution: a) If there was an x^{3} in the integral, we could integrate by parts... but it is much easier to turn this into an ordinary polynomial:

$$
\begin{aligned}
\int\left(x^{4}-5\right)^{2} d x & =\int\left(x^{4}-5\right)\left(x^{4}-5\right) d x \\
& =\int x^{8}-10 x^{4}+25 d x \\
& =\frac{1}{9} x^{9}-2 x^{5}+25 x+c
\end{aligned}
$$

b) Same idea again. Just expand:

$$
\begin{aligned}
\int\left(x^{3}+x\right)\left(2 x^{2}-4\right) d x & =\int 2 x^{5}-2 x^{3}-4 x d x \\
& =\frac{1}{3} x^{6}-\frac{1}{2} x^{4}-2 x^{2}+c
\end{aligned}
$$

c) And the same idea again. Divide the denominator into the numerator and the result will be a polynomial:

$$
\begin{aligned}
\int \frac{x^{3}+4 x-3}{x} d x & =\int \frac{x^{3}}{x}+\frac{4 x}{x}-\frac{3}{x} d x \\
& =\int x^{2}+4-3 x^{-1} d x \\
& =\frac{1}{3} x^{3}+4 x-3 \ln |x|+c
\end{aligned}
$$

d) In this case, we can use trigonometric identities to make the integral easier:

$$
\begin{aligned}
\int \cos x \tan ^{2} x+\cos x d x & =\int(\cos x)\left(\tan ^{2} x+1\right) d x \\
& =\int(\cos x)\left(\sec ^{2} x\right) d x \\
& =\int \frac{\cos x}{\cos ^{2} x} d x \\
& =\int \sec x d x \\
& =\ln |\sec x+\tan x|+c
\end{aligned}
$$

e) We can also express fractions with negative exponents:

$$
\begin{aligned}
\int \frac{1}{e^{2 x}} d x & =\int e^{-2 x} d x \\
& =-\frac{1}{2} e^{-2 x}+c
\end{aligned}
$$

EXERCISES

A. Evaluate the integrals:

1) $\int(x+1)^{3} d x$
2) $\int \frac{\sin ^{2} x+\sin x \cos x}{\cos ^{2} x+\sin x \cos x} d x$
3) $\int\left(x^{15}-x^{12}\right)^{2} d x$
4) $\int \sin x \tan x+\cos x d x$
5) $\int\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)\left(x^{\frac{5}{2}}-x^{\frac{3}{2}}\right) d x$
6) $\int(\sin x+\cos x+1)(\sin x+\cos x-1) d x$
7) $\int \frac{3 x^{5}-5 x^{3}}{2 x^{2}} d x$
8) $\int \frac{e^{x}+e^{3 x}}{e^{2 x}} d x$
9) $\int \frac{x^{2}-3 x-28}{x^{3}-7 x^{2}} d x$
10) $\int\left(1+e^{3 x}\right) \cdot e^{2} d x$

SOLUTIONS

A. (1) $\int x^{3}+3 x^{2}+3 x+1 d x=\frac{1}{4} x^{4}+x^{3}+\frac{3}{2} x^{2}+x+c$
(2) $\int x^{30}-2 x^{27}+x^{24} d x=\frac{1}{31} x^{31}-\frac{1}{14} x^{28}+\frac{1}{25} x^{25}+c$
(3) $\int x^{3}+x d x=\frac{1}{4} x^{4}+\frac{1}{2} x^{2}+c$
(4) $\int \frac{3}{2} x^{3}-\frac{5}{2} x d x=\frac{3}{8} x^{4}-\frac{5}{4} x^{2}+c$
(5) $\int x^{-1}+4 x^{-2} d x=\ln |x|-\frac{4}{x}+c$
(6) $\int \tan x d x=\ln |\sec x|+c$
(7) $\int \sec x d x=\ln |\sec x+\tan x|+c$
(8) $\int \sin 2 x d x=-\frac{1}{2} \cos 2 x+c$
(9) $\int e^{-x}+e^{x} d x=-e^{-x}+e^{x}+c$
(10) $\int e^{3 x+2}+e^{2} \mathrm{dx}=\frac{1}{3} e^{3 x+2}+e^{2} \mathrm{x}+\mathrm{c}$ [e^{2} is just a constant!]

