Differentiation \& Integration Formulas

DIFFERENTIATION FORMULAS

$$
\begin{aligned}
& \frac{d}{d x}(\sin u)=\cos u \frac{d u}{d x} \\
& \frac{d}{d x}(\cos u)=-\sin u \frac{d u}{d x} \\
& \frac{d}{d x}(\tan u)=\sec ^{2} u \frac{d u}{d x} \\
& \frac{d}{d x}(\ln u)=1 / u \frac{d u}{d x} \\
& \frac{d}{d x}(\log a)=1 / u \log _{a} e \frac{d u}{d x}
\end{aligned}
$$

$$
\frac{d}{d x}(\csc u)=-\csc u \cot u \frac{d u}{d x}
$$

$$
\frac{d}{d x}(\sec u)=\sec u \tan u \frac{d u}{d x}
$$

$$
\frac{d}{d x}(\cot u)=-\csc ^{2} u \frac{d u}{d x}
$$

$$
\frac{d}{d x}\left(e^{u}\right)=e^{u} \frac{d u}{d x}
$$

INTEGRATION FORMULAS

Note: a, b and c are constants; k is the integration constant.
$\int a d x=a x+k$
$\int \frac{a}{b x+c} d x=a / b \ln (b x+c)+k$
$\int a \sin (b x+c) d x=-\frac{a}{b} \cos (b x+c)+k$
$\int \sec ^{2} x d x=\tan x+k$
$\int \sec x \tan x d x=\sec x+k$
$\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin 2 x}{4}+k^{* *}$
$\int \tan ^{2} x d x=\tan x-x+k$

** POWER-REDUCING FORMULAS

$\cos ^{2} x=\frac{1+\cos 2 x}{x}$

SPECIAL LIMITS

$\lim _{x \rightarrow 0} \frac{\sin x}{x}=0$
$\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \stackrel{\text { def }}{=} e^{x}$

L'HOSPITAL'S RULE

If you are asked to take the limit of a rational function $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are differentiable, but the limit comes to $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$, assuming the second limit exists and $g^{\prime}(x) \neq 0$.

INTEGRATION BY PARTS

Integration by parts is a way of using the Product Rule in reverse. The formula for integration by parts is:

$$
\int u d v=u \cdot v-\int v d u
$$

Wikipedia (http://en.wikipedia.org/wiki/Integration_by_parts) suggests the following order for choosing which part of the integral to integrate and which to differentiate:
u
Logarithmic functions
Inverse trigonometric functions
Algebraic functions (such as x^{2})
Trigonometric functions
Exponential functions
dv
Choose the part that is higher on the list for u, and the part that is lower for $d v$. This is a rule of thumb - it is a suggestion for what is best, but it doesn't always work perfectly.

AREA UNDER A CURVE

The area between a curve $f(\mathrm{x})$ and the x -axis from $\mathrm{x}=\mathrm{m}$ to $\mathrm{x}=\mathrm{n}$ is:

$$
A=\int_{m}^{n} f(x) d x
$$

If a curve goes below the x-axis, the area in that section is subtracted from the total area.

It is possible to split integrals so that "negative area" is interpreted as positive. If, on the interval $[\mathrm{m}, \mathrm{n}]$ containing $\mathrm{p}, f(\mathrm{x})>0$ over $[\mathrm{m}, \mathrm{p})$ and $f(\mathrm{x})<0$ over $(\mathrm{p}, \mathrm{n}]$, then

$$
A=\int_{m}^{p} f(x) d x-\int_{p}^{n} f(x) d x
$$

VOLUME OF A SOLID OF REVOLUTION

If the region under the graph of $f(\mathrm{x})$, from $\mathrm{x}=\mathrm{m}$ to $\mathrm{x}=\mathrm{n}$ is rotated around the y -axis, then the volume swept out by the curve is:

$$
\mathrm{V}=\int_{\mathrm{m}}^{\mathrm{n}} 2 \pi \mathrm{x} f(\mathrm{x}) \mathrm{dx}
$$

If the curve is rotated around the x-axis instead, the volume is:

$$
V=\int_{m}^{n} \mathrm{~A}(x) \mathrm{dx}=\int_{\mathrm{m}}^{n} \pi[f(x)]^{2} d x
$$

