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Maxima & Minima

Aside from finding the tangent line to a curve, derivatives can also be used to find the
highest or lowest value for a function given a set of constraints. For a curve that is
continuous over the entire domain of a function, these extreme points, or extrema (pl. of
extremum), can only occur where the derivative is equal to zero. The critical values for
a function are those x-values where the derivative of the function is zero, or the
derivative does not exist.

If an extreme point is the highest point in its neighbourhood, it's called a maximum, and
if it's the lowest, it's a minimum. If there are other values for f(x) elsewhere that
surpass these points, then these are called a local maximum or a local minimum. If a
value for f(x) is the highest or lowest possible for the function, then it is a global
maximum or a global minimum.

Example 1: Find all extreme points on the curve y = x* — 4x3 — 20x? + 5.
Solution: First, we take the derivative, then we find its zeroes:

y = x*=4x3-20x2+5
y' = 4x3 - 12x% - 40x
4x(x? = 3x = 10)
4x(x = 5)(x + 2)

4x(x = 5)(x + 2)
-2,00r5
We plug these values for x into our original equation for y:
y = [-2]* - 4[-2]° - 20[-2]* + 5
= =27
y = [0]* - 4[0]° - 20[0]* + 5
=5

0
X

[5]* - 4[5]% - 20[5]2 + 5
~370

The critical points are (-2, —-27), (0, 5) and (5, =370). We can tell whether these are
maxima or minima by applying the Second Derivative Test. If the result is positive, then
the point is a minimum. If the result is negative, the point is a maximum. (We’'ll look at
the possibility that the result is zero on the next page.)

y' = 4x3 - 12x% - 40x

y

y" = 12x? - 24x - 40
when x = =2 whenx = 0 whenx = 5
y" = 12[-2)* - 24[-2] - 40 y" = 12[0]* - 24[0] - 40 y" = 12[5]* - 24[5] - 40

56 minimum! -40 maximum! 140 minimum!
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Not every point where the derivative is zero is an extreme point, however, and not every
extremum occurs where the derivative is zero....

Example 2: Find the global maximum and minimum for the function y = x* — 2x3 - 36x?
+ 162x + 1 over the interval [-7, 5].

Solution: Again, we start with the zeroes of the derivative:

y = x4 = 2x3-36x%+ 162x + 1
y' = 4x3 - 6x2 - 72X + 162
4x*-B6x2—-72x+162 = 0
2x3-3x*-36x+81 =0

We can use synthetic division to find one factor of this cubic. When we factor, we find
that the derivative factors to 2(x — 3)%(2x + 9), so the zeroes are 3 and - 2. These are

both within the domain of the function, and they are critical points, but have we found a
global maximum or minimum?

We take the second derivative and check:
y' = 12x2 - 12x - 72

12[3? - 12[3] - 72 = 0 nota maximum or minimum!
12[- 3P -12[-3]1-72 = 225 minimum!

Shown here is the graph of this function. The y
point at x = 3 is called a saddle point. The
function is increasing on one side of the critical 750

point and decreasing on the other, so it's not a
minimum or a maximum. The pointatx = - 3 is

a minimum, as the test told us.

Recall that the endpoints of a restricted domain ‘ -5 s 5 X
(as there is in this question), as well as any x
value where there is a discontinuity, are also
critical values, and they must be examined. We
use the original function to figure out what the
global maximum and minimum are, looking at all
critical points:

-750

| x y | So the global minimum is (-%,
=7 190 —858.6875) and the global maximum is (5, 286).
-9 | -
3/2 Efg?j Note that (5, 286) is not a local maximum. An endpoint can never be a
5 536 local maximum or a local minimum, but it can be a global maximum or

minimum. Also note that if the domain had been restricted to [-7, 5), 5
would not be the global maximum, since it wouldn’t be within the domain. In a case like

this, where the x-value that would otherwise be a global minimum or maximum isn’t part
of the domain, the function has no global minimum or maximum over that interval.
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EXERCISES
A. Find the critical points of the following functions and classify them as maxima,
minima or saddle points using the Second Derivative Test:

1) y=x*+6x-6 4) y=-/-2x*+21x + 16
2) y=-3x2+9x - 17 5) y=x3+3x2+3x+3
3) y=5x2+8x+13 6) y=x*+12x3 + 48x? + 80x + 36

B. In Math 12, you learned that the vertex of the parabola defined by y =ax2 + bx + c is
atx = —-£ . Use the calculus from this worksheet to prove this fact.

C. Find the global maximum and the global minimum for each function, if possible:

1) y=x2-2x-6, over [-3, 3] 4) y=-Vx*-3x?-8x + 16, over [-3, 3]
2) y= 2; over [-2, 2) 5) y =sin x + x, over (1T, 5]
X“+X+4

3) y=12x| - x -2, over [-1, 2]

SOLUTIONS

A. (1) c.p. ==3[min] (2) c.p. =% [max] (3) c.p. =10 [min] (4) c.p. = 3 [max], =7 [min]
(5) c.p. = -1 [saddle] (6) c.p. =-2 [saddle], =5 [min]

C. (1) g.max = (=3, 9), g.min = (1, =7) (2) g.max = (=¥, %s), g.min does not exist in

this interval (3) g.max = (-1, 1), g.min = (0, =2) (4) g.max = (-2, 83), g.min = (3, -44)
(5) g.max = (511, 511), g.min does not exist in this interval
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