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Curve Sketching 

  A good graphing calculator can show you the shape of a graph, but it doesn’t always 
give you all the useful information about a function, such as its critical points and 
asymptotes. Due to most graphing calculators’ poor resolution, it can also be difficult to 
get detailed information about the shape of a graph. Curve sketching is a kind of 
analysis that determines useful information about a function and allows you to draw a 
remarkably accurate graph. The example below illustrates all the steps of curve 
sketching.  
 
 

Example: Sketch the graph of ƒ(x) = 
1x4

x2


. 

 
DOMAIN AND RANGE 
If the function has a limited domain or range, then this should be the first thing you 
examine. Domain is more important for curve sketching than range. Rational functions, 
radical functions, logarithmic functions, and some trigonometric functions can have 
limited domains. Some trigonometric functions have restricted ranges. 
 

The function’s denominator cannot be 0. There are no other restrictions on x. 
 

 4x + 1 ≠ 0 

 x ≠ 
4
1  

The domain is (−∞,
4
1 ) ∪ (

4
1 , ∞). 

 

 
INTERCEPTS 
The x- and y-intercepts are the places where the function crosses the axes. These can 
be determined easily by evaluating the function at 0 (for x-intercepts) or solving the 
function for 0 (for y-intercepts). These points can be plotted directly onto the graph. 
 

To find the y-intercept, we set x = 0: 

 
1]0[4

]0[ 2


 = 0  (0, 0) 

 

To find x-intercepts, we solve for ƒ(x) = 0: 

 
1x4

x2


 = 0 

 x² = 0 
 x = 0 
There is only one x-intercept. (There can never be more than one y-intercept; do you 
know why?) 
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SYMMETRY 
Functions can have reflectional, rotational and periodic symmetry. You can test for 
reflectional symmetry across the y-axis by testing whether ƒ(x) = ƒ(−x) for all x in the 
domain. Such functions are called even functions. For functions that have rotational 
symmetry about the origin (called odd functions), −ƒ(x) = ƒ(−x). Periodic functions 
repeat over time, such as the sine and cosine functions. If ƒ(x) = ƒ(x + p) for some 
positive real number p and all x in the domain, the function is periodic. 
 

We can tell by inspection that the function is not periodic. If it were, we’d have infinite x-
intercepts at regular intervals, not just one at (0, 0). We should check for the other two 
forms of symmetry. Calculate ƒ(−x) and compare it to ƒ(x) and −ƒ(x). 

 ƒ(−x) = 
1)x(4

)x( 2




 

  = 
1x4

x2


 

This is not equal to ƒ(x), so the function is not even. It is also not equal to −ƒ(x), which 
would have a denominator of −4x − 1, so the function is not odd. 
 

 
ASYMPTOTES 
Asymptotes are straight lines that the graph of a function approaches.  
 

Vertical asymptotes occur at values of x where the function approaches infinity or 
negative infinity. For rational functions, these happen at values for x that make the 
function’s denominator equal to zero. For other functions with restricted domains, it is 
worth testing the domain’s endpoints to see if they are vertical asymptotes. The graph of 
a function will never cross a vertical asymptote. 
 

Horizontal asymptotes occur at values of y where the function approaches infinity or 

negative infinity. If )x(ƒlim
x 

 or ƒ(x)lim
x 

 come to fixed finite values, then these are the 

horizontal asymptotes. A function may take on the y value at a horizontal asymptote. 
Horizontal asymptotes are tendencies at positive or negative infinity for x. 
 

To find horizontal asymptotes of rational functions of polynomials, look at the order of 
the polynomials in the numerator and denominator, i.e. the exponents on the leading 
terms. If the numerator has an order greater than that of the denominator, there is no 
asymptote. If the orders are the same, then the asymptote occurs at the value that you 
get when you divide the two leading terms. (So if the function is 3x² + … over 5x² − …, 

there is a horizontal asymptote at y = 
5
3 .) If the denominator has a higher order than the 

numerator, there is a horizontal asymptote at y = 0. 
 

There is a vertical asymptote at the “hole” in our domain, x = 
4
1 . Because the order of 

the numerator is greater than the denominator (the numerator is quadratic while the 
denominator is linear), there is no horizontal asymptote. 
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CRITICAL VALUES 
Calculate the first derivative of the function. Find all values for x where ƒ′(x) = 0 and any 
endpoints of intervals where ƒ′(x) does not exist. These are the critical values for the 
function. At this stage, it is useful to set up a chart for yourself that looks like this: 
 

x  

y  

y′  

y′′  
 

For this chart, all values on the x line should be in order from smallest to largest, left to 
right. Put the critical values on the x line, and mark the y′ line with zeroes (or DNE, for 
“does not exist”) beneath them, to show that they are critical values. Plug these values 
for x into the function and determine the y-values. Put these on the y line. 
 

To assess critical values, we look at the endpoints of the sections of our domain and 

anywhere that ƒ′(x) = 0. We already know that there is a critical value at x = 
4
1 . Now 

we need to evaluate ƒ′(x), and solve for zero. 

 ƒ(x) = 
1x4

x2


 

 ƒ′(x) = 
2

2

)1x4(

)4)(x()1x4)(x2(




 

  = 
2

22

)1x4(

x4x2x8




 

  = 
2

2

)1x4(

x2x4




 

 At critical values, 
2

2

)1x4(

x2x4




 = 0 

 4x² + 2x = 0 
 2(x)(2x + 1) = 0 

 x = 0 or x = 
2
1  

So there are three critical values: 
2
1 , 

4
1  and 0. We set up our chart, including the y-

values at the critical points: 
 
 
 
 
 
 
 

 

 

x 

y 

y′ 

y′′ 

−½ 

−¼ 

0 

−¼ 

DNE 

DNE 

0 

0 

0 
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INCREASING AND DECREASING INTERVALS 
Choose test points between the critical values and plug them into y′. If a result is 
positive, then the interval between the two critical values is an increasing interval for the 
function. If a result is negative, the interval is a decreasing one. Mark the y′ line with “+” 
and “−” to indicate increasing and decreasing sections.  
 

We use test points between the critical values — any number we like — to see whether 
the four regions of the graph are increasing or decreasing. We evaluate ƒ′(x) for the test 
points: 

ƒ′(−1) = +
9
2 ; ƒ′(−0.3) = −6; ƒ′(−0.1) = −

9
4 ; ƒ′(1) = +

25
6  

Positive results show increasing intervals and negative results show decreasing ones: 
 
 
 
 
 
 
 

 
CONCAVITY AND INFLECTION POINTS 
Calculate the second derivative. Find the inflection points of the function by solving ƒ′′(x) 
= 0. Mark these values in the appropriate places on the x line of your chart (still in order, 
smallest to largest, among the values already on the chart). Mark “0” at these places on 
the y′′ line of the chart, and evaluate the function for the inflection points. These values 
go on the y line; you should plot these points when you graph the function. 
 

Determine which intervals of the function are concave up and concave down by 
evaluating ƒ′′(x) at test values between each consecutive pair of inflection points. If ƒ′′(x) 
is positive, the function is concave up, and if it’s negative, the function is concave down. 
 

We now perform a similar test with the second derivative. 
4
1  is not technically an 

inflection point, but we will want to use it as a division point between concave-up and 
concave-down intervals. 

 ƒ′(x) = 
2

2

)1x4(

x2x4




 

 ƒ′′(x) = 
4

22

)1x4(

)x2x4](4)1x4(2[)1x4)(2x8(




 

We see a way to make this calculation easier by cancelling (4x + 1): 

  = 
4

2

)1x4(

)]x2x4(8)1x4)(2x8[()1x4(




 

  = 
3

2

)1x4(

)x2x4(8)1x4)(2x8(




 

  = 
3

22

)1x4(

x16x322x16x32




 

x 

y 

y′ 

y′′ 

−½ 

−¼ 

0 

−¼ 

DNE 

DNE 

0 

0 

0 

−1 

+ 

−0.3 

− 

1 

+ 

−0.1 

− 
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  = 
3)1x4(

2


≠ 0 

Inflection points occur where the second derivative equals zero. The only way to make a 
fraction equal to zero is if the numerator equals zero. Clearly this isn’t possible in this 
case, so there are no inflection points on this curve. So we have two sections of the 

graph to check, one on either side of the discontinuity at x = 
4
1 . 

ƒ′′(−1) = −
27
2 ; ƒ′′(0) = +2 

 
 
 
 
 
 
 

The interval below the discontinuity is concave down and the interval above the 
discontinuity is concave up. 
 

We now have enough information to make a sketch of 

the graph. There is a vertical asymptote at x =
4
1 . 

Below this discontinuity the function is concave-down 

with a maximum at (
2
1 , 

4
1 ). Above the discontinuity, 

the function is concave-up with a minimum at (0, 0), 
which is the graph’s only intercept. The graph tends to 

negative infinity as x  −∞ and as x approaches 
4
1  

from below. The graph tends to infinity as x  ∞ and as 

x approaches 
4
1  from above. Our sketch is to the 

right, and the actual graph is below. 
 

 
 
 
 
The only thing our sketch didn’t capture was 
how fast the two ends tended to infinity. 
(There was one more test we could have done 
that would have told us this: the test for a slant 
asymptote. Not every class covers it. If yours 
does, you may want to go back and calculate 
the slant asymptote for this function.) 

x 

y 

5 

5 -5 

-5 

(0, 0) 

(−½, −¼) 

x = −¼ 

y = ƒ(x) 

x 

y 

5 

5 -5 

-5 

(0, 0) 

(−½, −¼) 

x = −¼ 

y = ƒ(x) 

x 

y 

y′ 

y′′ 

−½ 

−¼ 

0 

−¼ 

DNE 

DNE 

0 

0 

0 

−1 

+ 

−0.3 

− 

1 

+ 

−0.1 

− 

+ − DNE 
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EXERCISES 

A. Using a graphing calculator, plot the graph of y = 
15x2x

6x
2 


. 

 1) From the graph, estimate or calculate the locations of asymptotes and critical 
points for the function. 

 
 2) Use the techniques of curve sketching to verify your answer to (1). 
 
B. Sketch the graphs of the following functions. Include intercepts, critical values, 
inflection points and asymptotes on the graph where applicable: 

 1) ƒ(x) = 
1x5

2x3




  3) ƒ(x) = sin x + ½ sin 2x 

 
 2) ƒ(x) = x4 + 6x3 + 4x2   
 
 
 
 
 
 
 
 
 

SOLUTIONS 
 

A. (1) Most likely answers: vertical asymptotes at x = −5 and x = 3, horizontal 
asymptote at y = 0, critical point at (−3, −0.25).   (2) Vertical asymptotes at −5 and 3; no 
horizontal asymptotes; critical points at (−3, −¼) and (−9, −1⁄16) 
 
B. (1) Domain: (−∞, 1⁄5)   (1⁄5, ∞); Intercepts: (0, 2), (2⁄3, 0); Symmetry: none; 
Asymptotes: x = 1⁄5, y = −3⁄5; Critical value: 1⁄5; Inflection point: none; increasing 
everywhere in domain; concave up on (−∞, 1⁄5), concave down on (1⁄5, ∞) 
 

 (2) Domain: ℝ; Intercept: (0, 0), (0, −3 ± 5 ); Symmetry: none; Asymptotes: none; 

Critical points: (0, 0), (−½, 0.3125), (−4, −64); Inflection points: x = 
6

579  , so (−0.24, 

0.15), (−2.76, −37.60); increasing on (−4, −½)   (0, ∞) and decreasing on (−∞, −4)   
(−½, 0); concave up on (−∞, −2.76)   (−0.24, ∞) and concave down on (−2.76, −0.24) 
 

 (3) Domain: ℝ; Intercepts: (π·p, 0) for all p  ℕ; Symmetry: periodic (period = 2π), 

odd; Asymptotes: none; Critical points: (
4

33

3
π , ), (π, 0), and (

4

33

3
π5 ,  ); Inflection points: 

x = 0, π and cos−1(−0.25), so (0, 0), (1.82, 0.73), (π, 0), (4.46, −0.73); within [0, 2π), 

increasing on )π2,(),0[
3
π5

3
π   and decreasing on ( 3

π , 3
π5 ); concave up on (1.82, π) 

(4.46, 2π) and concave down on [0, 1.82)  (π, 4.46). 
 


