Calculus Review Sheet

DEFINITION OF A DERIVATIVE

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The derivative represents the slope of a function, or the rate of change in the value of a function.

LIMIT PROPERTIES

$$
\begin{gathered}
\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x) \\
\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x) \\
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad \text { provided } \lim _{x \rightarrow a} g(x) \neq 0
\end{gathered}
$$

CONTINUITY

[1] A function $f(x)$ is continuous at a point $x=a$ if and only if:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

A function is continuous on an interval if it is continuous at every point in the interval.
[2] The following functions are continuous everywhere in their domains:
exponential functions $\left[f(x)=2^{x}\right]$
logarithmic functions $\left[f(x)=\log _{5} x ; f(x)=\ln 2 x\right]$
polynomials $\left[f(x)=x^{5}-4 x^{3}+1 / 5 x^{2}+17\right]$
rational functions $\left[f(x)=\frac{x^{2}+7}{x+5}\right]$
root functions [$f(x)=\sqrt[3]{x^{2}}$]
trig functions and inverse trig functions $\left[f(x)=\sin x ; f(x)=\cos ^{-1} x\right]$
[3] If two functions f and g are continuous at a point c , then the following are continuous at c as well (k is a constant):
$f \pm g$
$\mathrm{k} f$
$f \cdot g$
$\frac{f}{g}$ *
$f \circ g$

* provided $g(\mathrm{c}) \neq 0$

INTERMEDIATE VALUE THEOREM

If $\quad f(\mathrm{x})$ is a continuous function over an interval $[\mathrm{a}, \mathrm{c}]$,
$f(\mathrm{a}) \neq f(\mathrm{c})$, and
B is a number between $f(\mathrm{a})$ and $f(\mathrm{c})$
then there must be a number b in $[\mathrm{a}, \mathrm{c}]$ where $f(\mathrm{~b})=\mathrm{B}$

DIFFERENTIATION FORMULAS

$f(x)=k \quad f^{\prime}(x)=0$
$f(x)=k x \quad f^{\prime}(x)=k$
$f(x)=g(x) \pm h(x) \quad f^{\prime}(x)=g^{\prime}(x) \pm h^{\prime}(x)$
$f(x)=g(x) \cdot h(x)$
$f^{\prime}(x)=g(x) \cdot h^{\prime}(x)+g^{\prime}(x) \cdot h(x)$
$f^{\prime}(x)=\frac{g^{\prime}(x) \cdot h(x)-g(x) \cdot h^{\prime}(x)}{(h(x))^{2}}$
$f^{\prime}(x)=k n x^{n-1}$
$f^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x)$
(where k is a constant)
[Sum/Difference Rule]
[Product Rule]
[Quotient Rule]
[Power Rule]
[Chain Rule]

DIFFERENTIABILITY

[1] A function is differentiable at a point c if $f^{\prime}(\mathrm{c})$ exists. A function is differentiable over an interval if it is differentiable at every point in the interval.
[2] If a function is differentiable over an interval, then it is continuous over the interval, but the reverse may not be true. (Just because a function is continuous, this does not mean it must be differentiable.)

CURVE SKETCHING

[1] A critical point is found on the curve at any x where $f^{\prime}(x)=0$.
[2] The curve is increasing on any interval where $f^{\prime}(x)>0$.
The curve is decreasing on any interval where $f^{\prime}(x)<0$.
The endpoints of these intervals can only be at $\pm \infty$, critical points, or discontinuities.
[3] An inflection point is found on the curve at any x where $f^{\prime \prime}(x)=0$.
[4] The curve is concave up on any interval where $f^{\prime \prime}(x)>0$.
The curve is concave down on any interval where $f^{\prime \prime}(x)<0$.
The endpoints of these intervals can only be at $\pm \infty$, inflection points, or discontinuities.

The table below summarizes this information. For each feature in the body of the table, the rows tell you which graph (f, f^{\prime} or $f^{\prime \prime}$) has the feature, and the columns indicate what the first or second derivative of $f(x)$ must be (positive, negative or zero) at those features. For example, to read the table, we would say that the graph of $f(x)$ is concave up when $f^{\prime \prime}(x)$ is positive. Another example is the graph of $f^{\prime}(x)$ has a critical point when $f^{\prime \prime}(x)$ is zero.

THE GRAPH OF...	WHEN $f^{\prime \prime}(x)$ IS...			WHEN $f^{\prime}(x)$ IS..		
	0	十	-	0	+	-
$f^{\prime \prime}(x)$	x-intercept					
$f^{\prime}(x)$	critical point	increasing	decreasing	x-intercept		
$f(x)$	inflection point	concave up	concave down	critical point	increasing	decreasing

