Solving Trigonometric Equations

We solve trigonometric equations just as we solve any other equation. We isolate the thing that we are trying to evaluate and then figure out what its value is. The difference is that with trigonometric equations, we first isolate an expression such as $\sin \mathrm{x}$ or $\cos \mathrm{x}$, and then we evaluate these trig expressions for x.

Example 1: Solve: $\sin x \cos x-\sin x=0$ in the interval $[0,2 \pi)$.
Solution:

$$
\sin x \cos x-\sin x=0
$$

$$
(\sin x)(\cos x-1)=0
$$

$$
\therefore \sin x=0 \text { or } \cos x-1=0
$$

$$
\begin{array}{rlr}
\sin x & =0 & \cos x-1 \\
=0 & 0 \\
x=0 \text { or } \pi & \cos x=1 \\
x & =0
\end{array}
$$

So the solutions are 0 and π.
Example 2: Solve: $\cos 2 x+3 \sin x-2=0$ in the interval [$0,2 \pi$).
Solution:

$$
\cos 2 x+3 \sin x-2=0
$$

$$
\begin{array}{r}
\left(1-2 \sin ^{2} x\right)+3 \sin x-2=0 \\
-2 \sin x^{2}+3 \sin x-1=0
\end{array}
$$

If we do a change of variable at this point, replacing "sin x " with " u ", we see that this is in the form of a quadratic equation:

$$
\begin{array}{r}
-2 u^{2}+3 u-1=0 \\
(-2 u+1)(u-1)=0
\end{array}
$$

So,

So the solutions are $\pi / 6, \pi / 2$ and $5 \pi / 6$.
Example 3: Solve: $\sin 2 x=0$ in the interval $[0,2 \pi)$.
Solution:

$$
\begin{aligned}
\sin 2 x & =0 \\
\sin \theta=0 & \rightarrow \theta=0, \pi, 2 \pi, 3 \pi, 4 \pi, \ldots \\
x & =0, \pi / 2, \pi, 3 \pi / 2,2 \pi, \ldots
\end{aligned}
$$

So the values for x within the interval are $x=0, \pi / 2, \pi$, and $3 \pi / 2$.

$$
\begin{aligned}
& -2 \sin x^{2}+3 \sin x-1=0 \\
& (-2 \sin x+1)(\sin x-1)=0 \\
& \therefore-2 \sin x+1=0 \text { or } \sin x-1=0 \\
& -2 \sin x+1=0 \quad \cos x-1=0 \\
& \sin x=1 / 2 \\
& x=\pi / 6 \text { or } 5 \pi / 6 \\
& \sin x=1 \\
& x=\pi / 2
\end{aligned}
$$

EXERCISES

Solve over the interval [0, 2π):

1) $2 \sin ^{2} x=1$
2) $(\sin x-2)(\sec x-2)=0$
3) $(\sin x-1)(2 \cos x-1)=0$
4) $\cot x(\sin x+1)=0$
5) $\sin 4 x=\sin 2 x$
6) $\sin ^{2} x-\cos x+1=0$
7) $\cot x+\tan x=2$
8) $2 \tan ^{2} x-\sec x+1=0$

SOLUTIONS

(1) $\sin x= \pm \frac{1}{\sqrt{2}} ; x=\pi / 4,3 \pi / 4,5 \pi / 4$, and $7 \pi / 4$ (2) $\sin x=1$ or $\cos x=1 / 2 ; x=\pi / 3, \pi / 2$, and $5 \pi / 3$
(3) $\cot x=0$ or $\sin x=-1 ; x=\pi / 2$ and $3 \pi / 2$ (4) $\cos x=1$ or $\cos x=-2(x) ; x=0$
(5) $\sec x=1$ or $\sec x=-1 / 2(x) ; x=0$
(6) $\sec x=2(\cos x=1 / 2)$ or $\sin x=2(x) ; x=\pi / 3$ or $5 \pi / 3$
(7) $\cos x=0$ or $\sin 2 x=0 ; x=0, \pi / 2, \pi, 3 \pi / 2$
(8) $\sin 2 x=0$ or $\cos 2 x=1 / 2 ; x=0, \pi / 6, \pi / 2,5 \pi / 6, \pi, 7 \pi / 6,3 \pi / 2$, and $11 \pi / 6$
(9) $\tan x=1 ; x=\pi / 4$ and $5 \pi / 4$

