Conic Sections:
 The Parabola

In earlier courses, you've looked at the parabola as the set of solutions to a quadratic equation. Now, you will start to see it as one of the conic sections. You'll learn about the centre of the parabola, the focus, and a line that has special properties related to the focus, the directrix.

FORMULAS FOR PARABOLAS

When the vertex of the parabola is at the origin, the formula is simple. For a parabola with a vertical line of symmetry (one that opens up or down), x is squared. For a parabola with a horizontal line of symmetry (one that opens right or left), y is squared.
Standard form: $\quad x^{2}=4 p y \quad y^{2}=4 p x$

Vertex:	$(0,0)$	$(0,0)$
Focus:	$(0, p)$	$(p, 0)$
Directrix:	$y=-p$	$x=-p$

When the vertex is not at origin, then the parabola has been translated (it has undergone a shift or a slide).
Standard form
Vertex:
Focus:
Directrix:

$$
\begin{array}{ll}
(x-h)^{2}=4 p(y-k) & (y-k)^{2}=4 p(x-h) \\
(h, k) & (h, k) \\
(h, k+p) & (h+p, k) \\
y=k-p & x=h-p
\end{array}
$$

$y=k-p$
Example 1: Determine the vertex, focus and directrix of the parabola $x^{2}+8 x+8 y=8$.
Solution: First we need to get the parabola into the standard form. We can tell that the parabola is a vertical parabola, since there is an x^{2} term instead of a y^{2} term. To convert our equation to standard form, we start by completing the square.

$$
\begin{aligned}
x^{2}+8 x+8 y & =8 \\
x^{2}+8 x & =8-8 y \\
x^{2}+8 x+\left(\frac{8}{2}\right)^{2} & =8-8 y+\left(\frac{8}{2}\right)^{2} \\
x^{2}+8 x+16 & =24-8 y \\
(x+4)^{2} & =24-8 y
\end{aligned}
$$

Now we need to format the right-hand side so that it matches standard form. We factor out $4 p$ from both terms:

$$
\begin{aligned}
(\mathrm{x}+4)^{2} & =-8(\mathrm{y}-3) \\
& =4 \cdot(-2)(\mathrm{y}-3) \\
\therefore \mathrm{p}=-2, \mathrm{~h} & =-4, \mathrm{k}=3
\end{aligned}
$$

The vertex is at $(-4,3)$, the focus is at $(-4,3-2)=(-4,1)$ and the directrix is $y=3-$ (-2) or $\mathrm{y}=5$.

EXERCISES

A. Determine the vertex, focus and directrix of the following parabolas:

1) $x^{2}=4 y$
2) $x^{2}=4 y+8$
3) $(x-3)^{2}=3 y+6$
4) $x+y^{2}+4 y=0$
5) $y^{2}=8 x+2$
6) $y^{2}-2 y+4 x-4=0$
B. Find the equation of the parabola that satisfies these conditions. Give your answers in general (i.e., simplified) form:
7) vertex is at $(0,0)$; focus at $(0,4)$
8) vertex is at (1, 0); directrix at $x=0$
9) focus at (1, 4); directrix at $y=2$

SOLUTIONS

A. (1) vertex: $(0,0)$; focus: $(0,1)$; directrix: $y=-1$
(2) vertex: $(0,-2)$; focus: $(0,-1)$; directrix: $y=-3$
(3) vertex: $\left(-\frac{1}{4}, 0\right)$; focus: $\left(\frac{7}{4}, 0\right)$; directrix: $x=-\frac{9}{4}$
(4) vertex: $(3,-2)$; focus: $\left(3,-\frac{5}{4}\right)$; directrix: $y=-\frac{11}{4}$
(5) vertex: (4, -2); focus: $\left(\frac{15}{4},-2\right)$; directrix: $x=\frac{17}{4}$
(6) vertex: $\left(\frac{5}{4}, 1\right)$; focus: $\left(\frac{1}{4}, 1\right)$; directrix: $x=\frac{9}{4}$
B. (1) $x^{2}=16 y \quad(2) y^{2}=4 x-4 \quad(3)(x-1)^{2}=4 y-12 \rightarrow x^{2}-2 x-4 y=-13$

