Learning Centre

Conic Sections: The Parabola

In earlier courses, you've looked at the parabola as the set of solutions to a quadratic equation. Now, you will start to see it as one of the **conic sections**. You'll learn about the centre of the parabola, the **focus**, and a line that has special properties related to the focus, the **directrix**.

FORMULAS FOR PARABOLAS

When the vertex of the parabola is at the origin, the formula is simple. For a parabola with a vertical line of symmetry (one that opens up or down), x is squared. For a parabola with a horizontal line of symmetry (one that opens right or left), y is squared.

Standard form:	x² = 4py	y² = 4px
Vertex:	(0, 0)	(0, 0)
Focus:	(0, p)	(p, 0)
Directrix:	y = -p	x = -p

When the vertex is not at origin, then the parabola has been translated (it has undergone a shift or a slide).

Standard form:	$(x - h)^2 = 4p(y - k)$	$(y - k)^2 = 4p(x - h)$
Vertex:	(h, k)	(h, k)
Focus:	(h, k + p)	(h + p, k)
Directrix:	y = k – p	x = h – p

Example 1: Determine the vertex, focus and directrix of the parabola $x^2 + 8x + 8y = 8$.

Solution: First we need to get the parabola into the standard form. We can tell that the parabola is a vertical parabola, since there is an x^2 term instead of a y^2 term. To convert our equation to standard form, we start by completing the square.

$$\begin{array}{rl} x^2 + 8x + 8y &= 8 \\ x^2 + 8x &= 8 - 8y \\ x^2 + 8x + (\frac{8}{2})^2 &= 8 - 8y + (\frac{8}{2})^2 \\ x^2 + 8x + 16 &= 24 - 8y \\ (x + 4)^2 &= 24 - 8y \end{array}$$

Now we need to format the right-hand side so that it matches standard form. We factor out 4p from both terms:

$$(x + 4)^2 = -8(y - 3)$$

= 4 · (-2)(y - 3)
. p = -2, h = -4, k = 3

The vertex is at (-4, 3), the focus is at (-4, 3 - 2) = (-4, 1) and the directrix is y = 3 - (-2) or y = 5.

Authored by Gordon Wong

This work is licensed under a Creative Commons Attribution 4.0 International License

EXERCISES

- A. Determine the vertex, focus and directrix of the following parabolas:
 - 1) $x^2 = 4y$ 4) $(x 3)^2 = 3y + 6$
 - 2) $x^2 = 4y + 8$ 5) $x + y^2 + 4y = 0$
 - 3) $y^2 = 8x + 2$ 6) $y^2 - 2y + 4x - 4 = 0$

B. Find the equation of the parabola that satisfies these conditions. Give your answers in general (i.e., simplified) form:

- 1) vertex is at (0, 0); focus at (0, 4)
- 2) vertex is at (1, 0); directrix at x = 0
- 3) focus at (1, 4); directrix at y = 2

SOLUTIONS

- A. (1) vertex: (0, 0); focus: (0, 1); directrix: y = -1
 - (2) vertex: (0, -2); focus: (0, -1); directrix: y = -3
 - (3) vertex: $(-\frac{1}{4}, 0)$; focus: $(\frac{7}{4}, 0)$; directrix: $x = -\frac{9}{4}$
 - (4) vertex: (3, -2); focus: (3, $-\frac{5}{4}$); directrix: $y = -\frac{11}{4}$
 - (5) vertex: (4, -2); focus: $(\frac{15}{4}, -2)$; directrix: x = $\frac{17}{4}$
 - (6) vertex: $(\frac{5}{4}, 1)$; focus: $(\frac{1}{4}, 1)$; directrix: $x = \frac{9}{4}$
- B. (1) $x^2 = 16y$ (2) $y^2 = 4x 4$ (3) $(x 1)^2 = 4y 12 \rightarrow x^2 2x 4y = -13$

This work is licensed under a Creative Commons Attribution 4.0 International License