Conic Sections: The Hyperbola

VANCOUVER COMMUNITY COLLEGE

The equation for a hyperbola has both an x^{2} and y^{2} term, with one of them being added and the other subtracted. Once the equation is in standard form, which one is subtracted (x^{2} or y^{2}) determines whether the hyperbola is "horizontal" or "vertical".

FORMULA FOR HYPERBOLAS

Once the formula for the hyperbola is in standard form (described below), a is always in the denominator of the term that's added, and b is always in the denominator of the term that's subtracted.

Horizontal Transverse Axis:
$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

centre: (h, k)
vertices: $(\mathrm{h}+\mathrm{a}, \mathrm{k}),(\mathrm{h}-\mathrm{a}, \mathrm{k})$
foci: $(h+c, k),(h-c, k)$, where $c^{2}=a^{2}+b^{2}$
asymptotes: $\mathrm{y}-\mathrm{k}=\frac{ \pm \mathrm{b}}{\mathrm{a}}(\mathrm{x}-\mathrm{h})$

Vertical Transverse Axis:
$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$

centre: (h, k)
vertices: $(h, k+a),(h, k-a)$
foci: $(h, k+c),(h, k-c)$, where $c^{2}=a^{2}+b^{2}$
asymptotes: $\mathrm{y}-\mathrm{k}=\frac{ \pm \mathrm{a}}{\mathrm{b}}(\mathrm{x}-\mathrm{h})$

Example 1: Find the centre, vertices, foci and asymptotes of the hyperbola $x^{2}+8 x-y^{2}+10 y=13$.

Solution: First we need to get the equation into the standard form. We start by completing the squares for x and for y.

$$
\begin{aligned}
\left(x^{2}+8 x\right)-\left(y^{2}-10 y\right) & =13 \\
\left(x^{2}+8 x+16-16\right)-\left(y^{2}-10 y+25-25\right) & =13 \\
\left(x^{2}+8 x+16\right)-16-\left(y^{2}-10 y+25\right)+25 & =13 \\
\left(x^{2}+8 x+16\right)-\left(y^{2}-10 y+25\right) & =13+16-25 \\
(x+4)^{2}-(y-5)^{2} & =4 \\
\frac{(x+4)^{2}}{4}-\frac{(y-5)^{2}}{4} & =1
\end{aligned}
$$

Now we can see h, k, a and $b: h=-4, k=5, a=2$ and $b=2$. The x term is added, so its
denominator has a^{2}. This hyperbola has a horizontal transverse axis. The centre is at (h , $k)$, or $(-4,5)$. The vertices are at ($\mathrm{h} \pm \mathrm{a}, \mathrm{k}$), or $(-2,5)$ and $(-6,5)$. We calculate c :

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
& =2^{2}+2^{2}=8 \\
\therefore c & =2 \sqrt{2}
\end{aligned}
$$

The foci, then, are at $(h \pm c, k)$, or $(-4 \pm 2 \sqrt{2}, 5)$. The asymptotes are:

$$
\begin{aligned}
& y-k=\frac{ \pm b}{a}(x-h) \\
& y-5= \pm 2 / 2[x-(-4)] \\
& y-5= \pm(x+4) \\
& y-5=x+4 \text { or } y-5=-x-4 \\
& y=x+9 \quad y=-x+1
\end{aligned}
$$

Example 2: Find the equation of the hyperbola with vertices at $(5,0)$ and $(-5,0)$ and foci at $(6,0)$ and $(-6,0)$.
Solution: First, we must determine whether this hyperbola has a horizontal or a vertical transverse axis. The two vertices have the same y value, as do the foci, so we have a horizontal transverse axis. (Vertical transverse axes have the same x value for all four points.) The distance between the two vertices is equal to 2 a :

$$
\begin{aligned}
2 \mathrm{a} & =\sqrt{[5-(-5)]^{2}+(0-0)^{2}} \\
& =\sqrt{10^{2}+0^{2}}=10 \\
\therefore a & =5
\end{aligned}
$$

The coordinate $(5,0)$ is the one that's farther to the right, so it must be $(h+a, k)$. This means $\mathrm{k}=0$, and $\mathrm{h}+\mathrm{a}=5$. Since $\mathrm{a}=5$, h must be 0 .
We can get b by calculating the distance between the centre and either focus, which is c:

$$
\begin{aligned}
c & =\sqrt{[6-0]^{2}+[0-0]^{2}} \\
& =\sqrt{6^{2}+0^{2}}=6 \\
c^{2} & =a^{2}+b^{2} \\
\mathrm{~b}^{2} & =\mathrm{c}^{2}-\mathrm{a}^{2} \\
& =[6]^{2}-[5]^{2} \\
& =36-25=11 \\
\therefore \mathrm{~b} & =\sqrt{11}
\end{aligned}
$$

We have h, k, a and b, so we can get the standard form of the equation of the hyperbola:

$$
\begin{aligned}
& \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \\
& \frac{(x-0)^{2}}{5^{2}}-\frac{(y-0)^{2}}{\sqrt{11}^{2}}=1
\end{aligned}
$$

$$
\frac{x^{2}}{25}-\frac{y^{2}}{11}=1
$$

Example 3: Find the equation of the hyperbola with vertices at $(4,-15)$ and $(4,1)$ and asymptotes at $\mathrm{y}=2 \mathrm{x}-15$ and $\mathrm{y}=-2 \mathrm{x}-1$.
Solution: First, we must determine whether this hyperbola has a horizontal or a vertical transverse axis. The two vertices have the same x value, so we have a vertical transverse axis. The distance between the two vertices is equal to 2 a :

$$
\begin{aligned}
2 \mathrm{a} & =\sqrt{[4-4]^{2}+[(-15)-1]^{2}} \\
& =\sqrt{0^{2}+16^{2}}=16 \\
\therefore \mathrm{a} & =8
\end{aligned}
$$

The vertex at $(4,1)$ is the one that's farther up, so it must be $(h, k+a)$. This means $h=$ 4 , and $k+a=1$. Since $a=8$, h must be -7 .
Since a and b are distances, the equation for the asymptote with a positive coefficient on x must be of the form $y-k=\frac{a}{b}(x-h)$. In fact, the coefficient on x must be $\frac{a}{b}$:

$$
\begin{aligned}
& \frac{a}{b}=2 \\
& \frac{8}{b}=2 \\
& b=4
\end{aligned}
$$

We have h, k, a and b, so we can get the standard form of the equation of the hyperbola:

$$
\begin{aligned}
& \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1 \\
& \frac{(y+7)^{2}}{8^{2}}-\frac{(x-4)^{2}}{4^{2}}=1 \\
& \frac{(y+7)^{2}}{36}-\frac{(x-4)^{2}}{16}=1
\end{aligned}
$$

EXERCISES

A. Find the centre, vertices, foci and asymptotes for each hyperbola:

1) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
2) $\frac{(y-1)^{2}}{4}-\frac{(x+1)^{2}}{9}=1$
3) $x^{2}-y^{2}=9$
4) $4 x^{2}-4 y^{2}=1$
5) $-x^{2}+y^{2}+16 y=17$
6) $x^{2}+4 x-y^{2}+8 y=3$
7) $x^{2}+2 x-4 y^{2}+4 y-1=0$
B. Find the equation of a hyperbola with the following features:
8) vertices: $(3,0),(-3,0)$; foci: $(4,0),(-4,0)$
9) vertices: $(-1,1),(-1,-3)$; foci: $(-1,2),(-1,-4)$
10) vertices: $(-4,10),(-4,-2)$; asymptotes: $y=3 x+16, y=-3 x-8$
C. Graph the hyperbola from Exercise A6, including the asymptotes.

SOLUTIONS

A: (1) ctr.: $(0,0)$; vert.: $(2,0),(-2,0)$; foci: $(\pm \sqrt{13}, 0)$; asym.: $y= \pm 3 / 2 x$
(2) ctr.: $(-1,1)$; vert.: $(-1,-1),(-1,3)$; foci: $(-1,1 \pm \sqrt{13})$; asym.: $y=2 / 3 x+5 / 3$, $y=-2 / 3 x+1 / 3$
(3) ctr.: $(0,0)$; vert.: $(-3,0),(3,0)$; foci: $(\pm 3 \sqrt{2}, 0)$; asym.: $y=x, y=-x$
(4) ctr.: (0, 0); vert.: $(-1 / 2,0),(1 / 2,0)$; foci: $\left(\pm \frac{\sqrt{2}}{2}, 0\right)$; asym.: $y=x, y=-x$
(5) ctr.: $(0,-8)$; vert.: $(0,-17),(0,1)$; foci: $(0,-8 \pm 9 \sqrt{2})$; asym.: $y=x+8$, $y=-x+8$
(6) ctr.: (-2, 4); vert.: $(-2,1),(-2,7)$; foci: $(-2,4 \pm 3 \sqrt{2})$; asym.: $y=x+6$, $y=-x+2$
(7) ctr.: ($-1,1 / 2$); vert.: $(-2,1 / 2),(0,1 / 2)$; foci: $\left(-1 \pm \frac{\sqrt{5}}{2}, 1 / 2\right)$; asym.: $y=1 / 2 x+1$, $y=-1 / 2 x$

B: (1) $\frac{x^{2}}{9}-\frac{y^{2}}{7}=1$
(2) $\frac{(y+1)^{2}}{4}-\frac{(x+1)^{2}}{5}=1$
(3) $\frac{(y-4)^{2}}{36}-\frac{(x+4)^{2}}{4}=1$

C:

[Note: Even though the y^{2} term was subtracted in this question, this hyperbola is vertical!]

