Learning Centre

Conic Sections: The Hyperbola

The equation for a hyperbola has both an x^2 and y^2 term, with one of them being added and the other subtracted. Once the equation is in standard form, which one is subtracted (x^2 or y^2) determines whether the hyperbola is "horizontal" or "vertical".

FORMULA FOR HYPERBOLAS

Once the formula for the hyperbola is in standard form (described below), *a* is always in the denominator of the term that's added, and *b* is always in the denominator of the term that's subtracted.

Horizontal Transverse Axis:

centre: (h, k) vertices: (h + a, k), (h - a, k) foci: (h + c, k), (h - c, k), where $c^2 = a^2 + b^2$ asymptotes: $y - k = \frac{\pm b}{a}(x - h)$

Vertical Transverse Axis:

centre: (h, k) vertices: (h, k + a), (h, k - a) foci: (h, k + c), (h, k - c), where $c^2 = a^2 + b^2$ asymptotes: $y - k = \frac{\pm a}{b}(x - h)$

Example 1: Find the centre, vertices, foci and asymptotes of the hyperbola $x^2 + 8x - y^2 + 10y = 13$.

Solution: First we need to get the equation into the standard form. We start by completing the squares for x and for y.

$$(x^{2} + 8x) - (y^{2} - 10y) = 13$$

$$(x^{2} + 8x + 16 - 16) - (y^{2} - 10y + 25 - 25) = 13$$

$$(x^{2} + 8x + 16) - 16 - (y^{2} - 10y + 25) + 25 = 13$$

$$(x^{2} + 8x + 16) - (y^{2} - 10y + 25) = 13 + 16 - 25$$

$$(x + 4)^{2} - (y - 5)^{2} = 4$$

$$\frac{(x + 4)^{2}}{4} - \frac{(y - 5)^{2}}{4} = 1$$

Now we can see h, k, a and b: h = -4, k = 5, a = 2 and b = 2. The x term is added, so its

denominator has a^2 . This hyperbola has a horizontal transverse axis. The centre is at (h, k), or (-4, 5). The vertices are at (h ± a, k), or (-2, 5) and (-6, 5). We calculate c:

$$C^2 = a^2 + b^2$$

= 2² + 2² = 8
·. c = 2 $\sqrt{2}$

The foci, then, are at (h ± c, k), or (-4 ± $2\sqrt{2}$, 5). The asymptotes are:

$$y - k = \frac{\pm b}{a} (x - h)$$

y - 5 = \pm 2/2 [x - (-4)]
y - 5 = \pm (x + 4)
y - 5 = x + 4 or y - 5 = -x - 4
y = x + 9 y = -x + 1

Example 2: Find the equation of the hyperbola with vertices at (5, 0) and (-5, 0) and foci at (6, 0) and (-6, 0).

Solution: First, we must determine whether this hyperbola has a horizontal or a vertical transverse axis. The two vertices have the same y value, as do the foci, so we have a horizontal transverse axis. (Vertical transverse axes have the same x value for all four points.) The distance between the two vertices is equal to 2a:

$$2a = \sqrt{[5 - (-5)]^2 + (0 - 0)^2}$$

= $\sqrt{10^2 + 0^2} = 10$
... $a = 5$

The coordinate (5, 0) is the one that's farther to the right, so it must be (h + a, k). This means k = 0, and h + a = 5. Since a = 5, h must be 0.

We can get b by calculating the distance between the centre and either focus, which is c:

c =
$$\sqrt{[6-0]^2 + [0-0]^2}$$

= $\sqrt{6^2 + 0^2} = 6$
c² = a² + b²
b² = c² - a²
= [6]² - [5]²
= 36 - 25 = 11
∴ b = $\sqrt{11}$

We have h, k, a and b, so we can get the standard form of the equation of the hyperbola:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
$$\frac{(x-0)^2}{5^2} - \frac{(y-0)^2}{\sqrt{11}^2} = 1$$

This work is licensed under a Creative Commons Attribution 4.0 International License

$$\frac{x^2}{25} - \frac{y^2}{11} = 1$$

Example 3: Find the equation of the hyperbola with vertices at (4, -15) and (4, 1) and asymptotes at y = 2x - 15 and y = -2x - 1.

Solution: First, we must determine whether this hyperbola has a horizontal or a vertical transverse axis. The two vertices have the same x value, so we have a vertical transverse axis. The distance between the two vertices is equal to 2a:

$$2a = \sqrt{[4-4]^2 + [(-15)-1]^2}$$

= $\sqrt{0^2 + 16^2} = 16$
... a = 8

The vertex at (4, 1) is the one that's farther up, so it must be (h, k + a). This means h = 4, and k + a = 1. Since a = 8, h must be -7.

Since a and b are distances, the equation for the asymptote with a positive coefficient on x must be of the form $y - k = \frac{a}{b}(x - h)$. In fact, the coefficient on x must be $\frac{a}{b}$:

$$\frac{a}{b} = 2$$

 $\frac{8}{b} = 2$
 $b = 4$

We have h, k, a and b, so we can get the standard form of the equation of the hyperbola:

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$
$$\frac{(y+7)^2}{8^2} - \frac{(x-4)^2}{4^2} = 1$$
$$\frac{(y+7)^2}{36} - \frac{(x-4)^2}{16} = 1$$

EXERCISES

A. Find the centre, vertices, foci and asymptotes for each hyperbola:

- 1) $\frac{x^2}{4} \frac{y^2}{9} = 1$ 2) $\frac{(y-1)^2}{4} - \frac{(x+1)^2}{9} = 1$ 3) $x^2 - y^2 = 9$ 4) $4x^2 - 4y^2 = 1$ 5) $-x^2 + y^2 + 16y = 17$ 6) $x^2 + 4x - y^2 + 8y = 3$ 7) $x^2 + 2x - 4y^2 + 4y - 1 = 0$
- B. Find the equation of a hyperbola with the following features:
 - 1) vertices: (3, 0), (-3, 0); foci: (4, 0), (-4, 0)
 - 2) vertices: (-1, 1), (-1, -3); foci: (-1, 2), (-1, -4)

This work is licensed under a Creative Commons Attribution 4.0 International License

- 3) vertices: (-4, 10), (-4, -2); asymptotes: y = 3x + 16, y = -3x 8
- C. Graph the hyperbola from Exercise A6, including the asymptotes.

SOLUTIONS

A: (1) ctr.: (0, 0); vert.: (2, 0), (-2, 0); foci: $(\pm\sqrt{13}, 0)$; asym.: $y = \pm \frac{3}{2}x$ (2) ctr.: (-1, 1); vert.: (-1, -1), (-1, 3); foci: (-1, $1 \pm \sqrt{13}$); asym.: $y = \frac{2}{3}x + \frac{5}{3}$, $y = -\frac{2}{3}x + \frac{1}{3}$ (3) ctr.: (0, 0); vert.: (-3, 0), (3, 0); foci: $(\pm 3\sqrt{2}, 0)$; asym.: y = x, y = -x(4) ctr.: (0, 0); vert.: ($-\frac{1}{2}$, 0), ($\frac{1}{2}$, 0); foci: ($\pm \frac{\sqrt{2}}{2}$, 0); asym.: y = x, y = -x(5) ctr.: (0, -8); vert.: (0, -17), (0, 1); foci: (0, $-8 \pm 9\sqrt{2}$); asym.: y = x + 8, y = -x + 8(6) ctr.: (-2, 4); vert.: (-2, 1), (-2, 7); foci: (-2, 4 \pm 3\sqrt{2}); asym.: y = x + 6, y = -x + 2(7) ctr.: (-1, $\frac{1}{2}$); vert.: (-2, $\frac{1}{2}$), (0, $\frac{1}{2}$); foci: (-1 $\pm \frac{\sqrt{5}}{2}$, $\frac{1}{2}$); asym.: $y = \frac{1}{2}x + 1$, $y = -\frac{1}{2}x$

B: (1)
$$\frac{x^2}{9} - \frac{y^2}{7} = 1$$
 (2) $\frac{(y+1)^2}{4} - \frac{(x+1)^2}{5} = 1$ (3) $\frac{(y-4)^2}{36} - \frac{(x+4)^2}{4} = 1$

C:

[Note: Even though the y² term was subtracted in this question, this hyperbola is vertical!]

