
Advanced Trigonometry

SPECIAL TRIANGLES

SINE AND COSINE IDENTITIES

sin θ = sin (θ + 2kπ), k is an integer sin (-θ) = -sin θ * sin (θ ± π) = - sin θ sin (π - θ) = sin θ * This is true for odd functions like: cot, csc, tan

 $\cos \theta = \cos (\theta + 2k\pi)$, k is an integer $\cos (-\theta) = \cos \theta **$ $\cos (\theta \pm \pi) = -\cos \theta$ $\cos (\pi - \theta) = -\cos \theta$ ** This is true for other even functions like: sec

RECIPROCAL AND QUOTIENT IDENTITIES

sec θ = $\frac{1}{\cos \theta}$, csc θ = $\frac{1}{\sin \theta}$, cot θ = $\frac{1}{\tan \theta}$ tan θ = $\frac{\sin \theta}{\cos \theta}$, cot θ = $\frac{\cos \theta}{\sin \theta}$

PYTHAGOREAN IDENTITIES

 $sin^{2} \theta + cos^{2} \theta = 1$ 1 + cot² \theta = csc² \theta 1 + tan² \theta = sec² \theta

COFUNCTION IDENTITIES

$$\sin (\theta \pm \frac{\pi}{2}) = \pm \cos \theta$$
$$\cos (\theta \pm \frac{\pi}{2}) = \mp \sin \theta$$

RECIPROCALS AND COFUNCTIONS

reciprocals	cofunctions
\rightarrow	sin θ ←┐
	$\cos \theta \leftarrow \Box$
$ \rightarrow$	tan θ ←┐
$\parallel \vdash \rightarrow$	cot θ ←
$ \rightarrow$	sec θ <¬
$ \rightarrow $	csc θ ←

Any trig function of a positive acute angle is equal to the *cofunction* of the complementary angle. e.g. sin $\theta = \cos(\frac{\pi}{2} - \theta)$ or sin $\theta = \cos(90^\circ - \theta)$

SUM & DIFFERENCE IDENTITIES

sin (α ± β) = sin α cos β ± cos α sin β
cos (α ± β) = cos α cos β ∓ sin α sin β
tan (α ± β) =
$$\frac{\tan α \pm \tan β}{1 \mp \tan α \tan β}$$

DOUBLE AND HALF ANGLE IDENTITIES

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= 2 \cos^2 \theta - 1$$

$$= 1 - 2 \sin^2 \theta$$

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

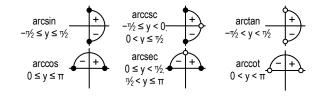
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

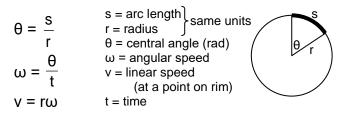
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

$$\tan^2 \theta = \frac{1 - \cos 2\theta}{2}$$

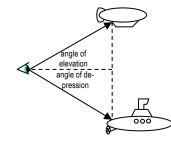

$$\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

$$\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$



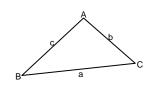
This work is licensed under a Creative Commons Attribution 4.0 International License

PRINCIPAL VALUES OF INVERSE FNS


ANGULAR MOTION

DEGREES, MINUTES AND SECONDS

 $1^{\circ} = 60'$ 1' = 60"


ANGLES OF ELEVATION AND DEPRESSION

SINE AND COSINE LAWS

Cosine Law (use with SAS or SSS)

 $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$

Sine Law (use with AAS, SSA)

 $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

[Note: the SSA case may yield 0, 1 or 2 solutions.]

ANGLE SPECIFICATION TECHNIQUES

Directed Angles

used for trig class

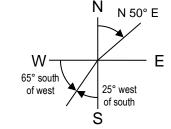
• +ve angles: start at the

positive x-axis and go CCW -ve angles: start at the

positive x-axis and go CW

 angles higher than 360° or 2π rad are possible

Heading, Bearing or Course used by airplanes and boats


start at North, go CW

 angle of arrival (coming into a destination) is 180° away from the angle leaving a location (e.g., if angle of departure is 30°, angle of arrival will be 210°)

Compass Directions

• two forms: (1) "N 50° E" starts

at North or South and moves CW or CCW eastward or westward (2) "65° south of west" starts at second

y

A

Ν

W^{270°}

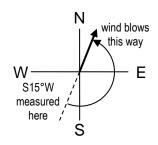
200°

180°

S

Х

<u>___</u>₽


compass point and moves CW or CCW toward the *first* compass point

 in form (2), every direction can be expressed two different ways

Wind Direction

 used in flying, weather reports

 wind direction is the direction the wind is blowing *from*, not *to*, e.g., a west wind blows from west to east

 find wind direction using above techniques; draw the vector pointing 180° away from the indicated angle

