Operations with Complex Numbers

Complex numbers are numbers that consist of a real part and an imaginary part. The imaginary part is an i, (which is $\sqrt{-1}$), with a real number coefficient in front of it. Complex numbers are usually written in the form $\mathrm{a}+\mathrm{bi}$. When you work with complex numbers, you can treat the i as if it were a variable.

OPERATIONS

To add or subtract complex numbers, combine the real parts, and combine the coefficients on i.

Example 1: \quad Add $(1+2 i)+(3+4 i)$.
Solution: $\quad(1+2 i)+(3+4 i)=(1+3)+(2+4) i$

$$
=4+6 i
$$

To multiply complex numbers, foil out the numbers, and then convert i^{2} into -1 .
Example 2: Multiply $(1+2 i) \cdot(3+4 i)$.
Solution:

$$
\begin{aligned}
(1+2 i) \cdot(3+4 i) & =1 \cdot 3+1 \cdot 4 i+2 i \cdot 3+2 i \cdot 4 i \\
& =3+4 i+6 i+8 i^{2} \\
& =3+10 i+8 \cdot(-1) \\
& =-5+10 i
\end{aligned}
$$

To divide complex numbers, write the division problem as a fraction and then "rationalize" the denominator by multiplying by the conjugate. (The conjugate of a $+\mathrm{b} i$ is $a-b i$ and vice versa.) Remember to express your final answer in the correct form.

Example 3: Divide $(3+4 i) \div(1+2 i)$.
Solution:

$$
\begin{aligned}
\frac{3+4 i}{1+2 i} & =\frac{3+4 i}{1+2 i} \cdot \frac{1-2 i}{1-2 i} \\
& =\frac{3+4 i-6 i-8 i^{2}}{1-2 i+2 i-4 i^{2}} \\
& =\frac{3-2 i-8(-1)}{1-4(-1)} \\
& =\frac{11-2 i}{5} \\
& =\frac{11}{5}-\frac{2}{5} i
\end{aligned}
$$

EXERCISES

A. Simplify:

1) $(1-i)+(2-3 i)$
2) $(1 / 2+1 / 4 i)+(3 / 2-5 / 4 i)$
3) $(3-i)-(5-2 i)$
4) $(\sqrt{2}+3 \sqrt{2} i)-(2 \sqrt{2}-\sqrt{2} i)$
5) $(1-i) \cdot(1+i)$
6) $(1+1 / 2 i) \cdot(1-2 i)$
7) $(3+i) \cdot(4-2 i)$
8) $(2+i) \cdot(2-2 i)$
9) $\frac{2+i}{i}$
10) $\frac{i}{1+i}$
11) $\frac{1+i}{1-i}$
12) $\frac{2-i}{2+3 i}$
13) $\frac{\sqrt{2}-i}{\sqrt{2}+i}$
14) $\frac{3+4 i}{3-4 i}$

SOLUTIONS

A. (1) $3-4 i$
(2) $2-i$
(3) $-2+i$
(4) $-\sqrt{2}+4 \sqrt{2} i$
(5) 2
$\begin{array}{ll}\text { (6) } 2-\frac{3}{2} i & \text { (7) } 14-2 i\end{array}$
(8) $6-2 i$
(9) $1-2 i$
(10) $\frac{1}{2}+\frac{1}{2} i$
(11) $i(12) \frac{1}{13}-\frac{8}{13} i$
(13) $\frac{1}{3}-\frac{2 \sqrt{2}}{3} i \quad(14)-\frac{7}{25}+\frac{24}{25} i$

