Higher-Order Polynomials

FACTOR THEOREM If, for a polynomial $f(x)$, the value of $f(\mathbf{a})=0$, then $(\mathbf{x}-\mathbf{a})$ is a factor of $f(x)$.
REMAINDER THEOREM For a polynomial $f(\mathrm{x})$, the value of $f(\mathrm{a})$ is the remainder when $f(x)$ is divided by $(x-a)$.
RATIONAL ZEROES TH'M The rational zeroes of a polynomial with integer coefficients will have a factor of the constant term as the numerator and a factor of the leading coefficient as the denominator.

EXERCISES

A. Determine the remainder after each of the following divisions:

1) $\left(x^{4}-3 x^{3}+5 x+8\right) \div(x+1)$
2) $\left(x^{8}-x^{5}-x^{3}+1\right) \div(x+i)$
3) $\left(x^{17}+1\right) \div(x-1)$
4) $\left(2 x^{5}-7\right) \div(x+1)$
B. Show that $(x-3)$ is a factor of the polynomial $f(x)=x^{4}-4 x^{3}-7 x^{2}+22 x+24$.
C. Evaluate:
5) $P(-2)$ given that $P(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}+10$
6) $f(2 i)$ given that $f(x)=x^{3}+3 x^{2}-3 x+6$
D. Determine if the following are roots of the given equation:
7) $-1, x^{3}-7 x-6=0$
8) $2, x^{4}-2 x^{2}-x+7=0$
9) $2 i, 2 x^{3}+3 x^{2}+8 x+12=0$
10) $2, x^{5}-6 x^{3}+4 x^{2}-x+4=0$
E. Determine the value(s) of k such that:
11) $(x-2)$ is a factor of $2 x^{3}+3 x^{2}-k x+10$
12) $4 x^{3}+3 x^{2}-k x+6 k$ is exactly divisible by $(x+3)$
13) $2 x^{3}-k x^{2}+6 x-3 k$ is exactly divisible by $(x+2)$
14) $\left(x^{4}-k^{2} x+3-k\right) \div(x-3)$ has a remainder of 4
15) 2 is a zero of the polynomial $f(x)=x^{5}+4 k x-4 k^{2}$
16) the equation $f(x)=2 x(x+1)\left(x^{2}+k\right)$ has zeroes at $0,-1$, and $\pm 2 i$.
17) 2 is a root of the equation $x^{3}-9 x+k=0$
F. Given that $f(x)=x^{3}-6 x^{2}-2 x+40$, use synthetic division to evaluate:
18) $f(-5)$
19) $f(4)$
G. Given the following roots, solve the equation for the other roots:
20) $x^{3}+2 x^{2}-23 x-60=0 ; 5$ is a root
21) $x^{4}-2 x^{2}-3 x-2=0 ;-1$ and 2 are roots
H. Determine the roots of the following equations:
22) $(x-1)^{2}(x+2)(x+4)=0$
23) $x^{3}\left(x^{2}-2 x-15\right)=0$
24) $x^{2}-i x+12$
I. Determine the simplest equation having only the following roots:
25) $5,1,-3$
26) $\pm 2,2 \pm \sqrt{3}$
27) $0,1 \pm 5 i$
J. Determine the simplest equation with integer coefficients having only the following roots:
28) $\pm 3 i, \pm \frac{1}{2} \sqrt{2}$
b) $-1,2$ (triple root)
K. The following are roots of equations with real coefficients. What other number must also be a root in each case?
29) $2 i$
30) $-3+2 i$
31) $-3-i \sqrt{2}$
L. The following are roots of equations with rational coefficients. What other number must also be a root in each case?
32) $-\sqrt{7}$
33) $-4+2 \sqrt{3}$
M. Are the following statements valid?
34) If $x=i$ is a root of $x^{3}+7 x-6 i=0$, then $-i$ must also be a root.
35) If $\sqrt{3}-i \sqrt{2}$ is a root of $x^{3}+(1-2 \sqrt{3}) x^{2}+(5-2 \sqrt{3}) x+5=0$, then $\sqrt{3}+i \sqrt{2}$ must also be a root.
36) If $-1+\sqrt{2}$ is a root of $x^{4}+(1-2 \sqrt{2}) x^{3}+(4-2 \sqrt{2}) x^{2}+(3-4 \sqrt{2}) x+1=0$, then $-1-\sqrt{2}$ must also be a root.
N. Write the simplest equation of lowest degree with satisfies the following:
37) real coefficients; 2 and $1-3 i$ are some of the roots
38) rational coefficients; $-1+\sqrt{5}$ and -6 are two of the roots
39) rational coefficients; $-5 i$ and $\sqrt{6}$ are two of its roots
40) rational coefficients; $2+i$ and $1-\sqrt{3}$ are two of its roots
41) complex coefficients; 2 and $1-3 i$ are the only roots
42) real coefficients; -6 and $-1+\sqrt{5}$ are the only roots
O. Determine the four roots of $x^{4}+2 x^{2}+1=0$.
P. Determine all rational roots, if any:
43) $x^{4}-2 x^{2}-3 x-2=0$
44) $x^{3}-x-6=0$
45) $2 x^{3}+x^{2}-7 x-6=0$
46) $2 x^{4}+x^{2}+2 x-4=0$
Q. Solve:
47) $x^{3}-2 x^{2}-x+2=0$
48) $2 x^{4}-3 x^{3}-7 x^{2}-8 x+6=0$
49) $x^{3}-2 x^{2}-31 x+20=0$
R. Graph $f(x)=\frac{1}{10}\left(x^{5}-3 x^{4}-7 x^{3}+25 x^{2}+8 x\right.$ $-60)$. From the graph, determine:
50) the number of positive, negative and complex roots
51) the values of any real root
S. According to Descartes' Rules, how many
 complex roots does the equation $2 x^{5}+x^{4}+x^{2}$ $+6=0$ have ?
T. How many real roots does the equation $x\left(x^{2}+1\right)\left(x^{2}-1\right)=0$ have?

SOLUTIONS

A. (1) 7
(2) 2
(3) 2
(4) -9
B. $f(3)=0$
C. (1) $P(-2)=0$
(2) $f(2 i)=-6-14 i$
D. (1) Yes. (2) No (3) Yes. (4) No. E.
$\begin{array}{lll}\text { (1) } k=19 & \text { (2) } k=9 & \text { (3) } k=-4\end{array}$
(4) $k=-16 / 3,5$
(5) $k=-2,4$
(6) $k=4$
(7) $k=10$
F. (1) -225
(2) 0
G. (1) -3 and -4
(2) $-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$
H. (1) $-4,-2$ and $1(\times 2)$
(2) $0(\times 3),-3,5$
(3) $-3 i, 4 i$
I. (1) $(x-5)(x-1)(x+3)=0 \rightarrow x^{3}-3 x^{2}-13 x+15=0 \quad(2)\left(x^{2}-4\right)\left(x^{2}-4 x+1\right)=0 \rightarrow$ $x^{4}-4 x^{3}-3 x^{2}+16 x-4=0 \quad$ (3) $x\left(x^{2}-2 x+26\right)=0 \rightarrow x^{3}-2 x^{2}+26 x=0$
J. (1) $\left(x^{2}+9\right)\left(x^{2}-\frac{1}{2}\right)(2)=0 \rightarrow 2 x^{4}+17 x^{2}-9=0 \quad(2)(x-2)^{3}(x+1)=0 \rightarrow$ $x^{4}-5 x^{3}+6 x^{2}+4 x-8=0 \quad$ K. (1) $-2 i \quad$ (2) $-3-2 i \quad$ (3) $-3+i \sqrt{2} \quad$ L. (1) $\sqrt{7}$
(2) $-4+2 \sqrt{7}$
M. (1) Not necessarily. (In fact, i is a root and $-i$ is not.)
(2) Yes, since the coefficients are real. (3) Not necessarily. (In fact, $-1+\sqrt{2}$ is a root, and $-1-\sqrt{2}$ isn't.) N. (1) $(x-2)\left(x^{2}-2 x+10\right)=0 \rightarrow x^{3}-4 x^{2}+14 x-20=0$ (2) $(x+6)\left(x^{2}+2 x-4\right)=0 \rightarrow x^{3}+8 x^{2}+8 x-24=0 \quad$ (3) $\left(x^{2}+25\right)\left(x^{2}-6\right)=0 \rightarrow$ $x^{4}+19 x^{2}-150=0$ (4) $\left(x^{2}-4 x+5\right)\left(x^{2}-2 x-2\right)=0 \rightarrow x^{4}-6 x^{3}+11 x^{2}-2 x-10=0$ $\begin{array}{ll}\text { (5) } x^{2}+(-3+3 i) x+2-6 i=0 & \text { (6) } x^{2}+(7-\sqrt{5}) x+6-6 \sqrt{5}=0 \quad \text { O. } \pm i \text {, both double }\end{array}$
P. (1) $-1,2$
(2) 2
(3) $-3 / 2,-1,2$
(4) No real roots.
Q. (1) $x=-1,1,2$
(2) $-5, \frac{7}{2} \pm \frac{\sqrt{33}}{2}$
(3) $1 / 2,3,-1 \pm i$
R. (1) 1 positive, 2 negative, 2 complex (2) -2 (double), 3

S . There is one negative real root, and no positive real roots, so there must be 4 complex roots.
T. 3 (namely, 0, 1 and -1)

