Higher-Order Polynomials

FACTOR THEOREM	If, for a polynomial $f(x)$, the value of $f(a) = 0$, then $(x - a)$ is a factor of $f(x)$.
REMAINDER THEOREM	For a polynomial $f(x)$, the value of $f(a)$ is the remainder when $f(x)$ is divided by $(x - a)$.
RATIONAL ZEROES TH'M	The rational zeroes of a polynomial with integer coefficients will have a factor of the constant term as the numerator and a factor of the leading coefficient as the denominator.

EXERCISES

- A. Determine the remainder after each of the following divisions:
 - 1) $(x^4 3x^3 + 5x + 8) \div (x + 1)$ 3) $(x^{17} + 1) \div (x 1)$
 - 2) $(x^8 x^5 x^3 + 1) \div (x + i)$ 4) $(2x^5 7) \div (x + 1)$
- B. Show that (x 3) is a factor of the polynomial $f(x) = x^4 4x^3 7x^2 + 22x + 24$.
- C. Evaluate: 1) P(-2) given that $P(x) = x^3 + x + 10$ 2) f(2i) given that $f(x) = x^3 + 3x^2 - 3x + 6$
- D. Determine if the following are roots of the given equation: 1) -1, $x^3 - 7x - 6 = 0$ 3) 2i, $2x^3 + 3x^2 + 8x + 12 = 0$
 - 2) 2, $x^4 2x^2 x + 7 = 0$ 4) 2, $x^5 - 6x^3 + 4x^2 - x + 4 = 0$

E. Determine the value(s) of k such that: 1) (x - 2) is a factor of $2x^3 + 3x^2 - kx + 10$

- 2) $4x^3 + 3x^2 kx + 6k$ is exactly divisible by (x + 3)
- 3) $2x^3 kx^2 + 6x 3k$ is exactly divisible by (x + 2)
- 4) $(x^4 k^2x + 3 k) \div (x 3)$ has a remainder of 4
- 5) 2 is a zero of the polynomial $f(x) = x^5 + 4kx 4k^2$

Authored by Gordon Wong

- 6) the equation $f(x) = 2x(x + 1)(x^2 + k)$ has zeroes at 0, -1, and $\pm 2i$.
- 7) 2 is a root of the equation $x^3 9x + k = 0$
- F. Given that $f(x) = x^3 6x^2 2x + 40$, use synthetic division to evaluate: 1) f(-5) 2) f(4)
- G. Given the following roots, solve the equation for the other roots: 1) $x^3 + 2x^2 - 23x - 60 = 0$; 5 is a root 2) $x^4 - 2x^2 - 3x - 2 = 0$; -1 and 2 are roots
- H. Determine the roots of the following equations: 1) $(x - 1)^2(x + 2)(x + 4) = 0$ 3) $x^2 - ix + 12$
 - 2) $x^{3}(x^{2} 2x 15) = 0$
- I. Determine the simplest equation having only the following roots: 1) 5, 1, -3 3) 0, 1 \pm 5*i*
 - 2) ±2, 2 ± $\sqrt{3}$

J. Determine the simplest equation with *integer* coefficients having only the following roots:

1) $\pm 3i$, $\pm \frac{1}{2}\sqrt{2}$ b) -1, 2 (triple root)

K. The following are roots of equations with *real* coefficients. What other number must also be a root in each case?

1) 2*i* 3) $-3 - i\sqrt{2}$

2) -3 + 2*i*

L. The following are roots of equations with *rational* coefficients. What other number must also be a root in each case?

1) $-\sqrt{7}$ 2) $-4 + 2\sqrt{3}$

M. Are the following statements valid?

1) If x = i is a root of $x^3 + 7x - 6i = 0$, then -i must also be a root.

2) If $\sqrt{3} - i\sqrt{2}$ is a root of $x^3 + (1 - 2\sqrt{3})x^2 + (5 - 2\sqrt{3})x + 5 = 0$, then $\sqrt{3} + i\sqrt{2}$ must also be a root.

This work is licensed under a Creative Commons Attribution 4.0 International License

3) If $-1 + \sqrt{2}$ is a root of $x^4 + (1 - 2\sqrt{2})x^3 + (4 - 2\sqrt{2})x^2 + (3 - 4\sqrt{2})x + 1 = 0$, then $-1 - \sqrt{2}$ must also be a root.

N. Write the simplest equation of lowest degree with satisfies the following:

- 1) real coefficients; 2 and 1 3i are some of the roots
- 2) rational coefficients; $-1 + \sqrt{5}$ and -6 are two of the roots
- 3) rational coefficients; -5i and $\sqrt{6}$ are two of its roots
- 4) rational coefficients; 2 + i and $1 \sqrt{3}$ are two of its roots
- 5) complex coefficients; 2 and 1 3i are the only roots
- 6) real coefficients; -6 and -1 + $\sqrt{5}$ are the only roots
- O. Determine the four roots of $x^4 + 2x^2 + 1 = 0$.
- P. Determine all rational roots, if any: 1) $x^4 - 2x^2 - 3x - 2 = 0$ 3) $2x^3 + x^2 - 7x - 6 = 0$
 - 2) $x^3 x 6 = 0$ 4) $2x^4 + x^2 + 2x - 4 = 0$
- Q. Solve: 1) $x^3 - 2x^2 - x + 2 = 0$ 3) $2x^4 - 3x^3 - 7x^2 - 8x + 6 = 0$
 - 2) $x^3 2x^2 31x + 20 = 0$

This work is licensed under a Creative Commons Attribution 4.0 International License

+ 6 = 0 have?

T. How many *real* roots does the equation $x(x^2 + 1)(x^2 - 1) = 0$ have?

SOLUTIONS

- A. (1) 7 (2) 2 (3) 2 (4) -9 B. f(3) = 0 C. (1) P(-2) = 0 (2) f(2i) = -6 14iD. (1) Yes. (2) No. (3) Yes. (4) No. E. (1) k = 19 (2) k = 9 (3) k = -4 (4) k = -16/3, 5 (5) k = -2, 4 (6) k = 4 (7) k = 10 F. (1) -225 (2) 0 G. (1) -3 and -4 (2) $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ H. (1) -4, -2 and 1 (×2) (2) 0 (×3), -3, 5 (3) -3*i*, 4*i* I. (1) (x - 5)(x - 1)(x + 3) = 0 \Rightarrow x³ - 3x² - 13x + 15 = 0 (2) (x² - 4)(x² - 4x + 1) = 0 \Rightarrow x⁴ - 4x³ - 3x² + 16x - 4 = 0 (3) x(x² - 2x + 26) = 0 \Rightarrow x³ - 2x² + 26x = 0 J. (1) (x² + 9)(x² - $\frac{1}{2}$)(2) = 0 \Rightarrow 2x⁴ + 17x² - 9 = 0 (2) (x - 2)³(x + 1) = 0 \Rightarrow x⁴ - 5x³ + 6x² + 4x - 8 = 0 K. (1) -2*i* (2) -3 - 2*i* (3) -3 + *i* $\sqrt{2}$ L. (1) $\sqrt{7}$ (2) -4 + $2\sqrt{7}$ M. (1) Not necessarily. (In fact, *i* is a root and -*i* is not.) (2) Yes, since the coefficients are real. (3) Not necessarily. (In fact, -1 + $\sqrt{2}$ is a root, and $-1 - \sqrt{2}$ isn't.) N. (1) (x - 2)(x² - 2x + 10) = 0 \Rightarrow x³ - 4x² + 14x - 20 = 0 (2) (x + 6)(x² + 2x - 4) = 0 \Rightarrow x³ + 8x² + 8x - 24 = 0 (3) (x² + 25)(x² - 6) = 0 \Rightarrow x⁴ + 19x² - 150 = 0 (4) (x² - 4x + 5)(x² - 2x - 2) = 0 \Rightarrow x⁴ - 6x³ + 11x² - 2x - 10 = 0 (5) x² + (-3 + 3*i*)x + 2 - 6*i* = 0 (6) x² + (7 - $\sqrt{5}$)x + 6 - 6 $\sqrt{5}$ = 0 O. $\pm i$, both double P. (1) -1, 2 (2) 2 (3) -³/₂, -1, 2 (4) No real roots.
- Q. (1) x = -1, 1, 2 (2) -5, $\frac{7}{2} \pm \frac{\sqrt{33}}{2}$ (3) $\frac{1}{2}$, 3, -1 ± *i*
- R. (1) 1 positive, 2 negative, 2 complex (2) -2 (double), 3

S. There is one negative real root, and no positive real roots, so there must be 4 complex roots.

T. 3 (namely, 0, 1 and -1)

