## Balancing Redox Reactions 2:

## The Ion-Electron Method

## VANCOUVER COMMUNITY COLLEGE

In the first redox reaction worksheet, we saw the oxidation number method of balancing equations. This worksheet shows you another method.
The steps for balancing a redox reaction using the ion-electron method are:
[1] Break the equation into two half-reactions, one for the oxidation step (loss of electrons) and one for the reduction step (gain of electrons). You will still need to use oxidation numbers to know which is which.
[2] Obtain material balance (i.e. balance the atoms) in each half-reaction.
[a] Balance everything other than hydrogen and oxygen.
[b] Balance oxygen by adding $\mathrm{H}_{2} \mathrm{O}$ to the other side.
[c] Balance hydrogen by adding $\mathrm{H}^{+}$to the other side.
[d] IF THE REACTION IS IN BASIC SOLUTION, add equal amounts of $\mathrm{OH}^{-}$to both sides to neutralize the $\mathrm{H}^{+}$. The $\mathrm{OH}^{-}$and $\mathrm{H}^{+}$combine to form water and leave excess
$\mathrm{OH}^{-}$on the other side. Cancel any water that appears on both sides. (ignore step d if solution is acidic)
[3] Obtain charge balance for each half-reaction by adding electrons as a product/reactant to the more positive side.
[4] Combine the half-reactions to cancel the electrons. You may have to multiply the equations by whole numbers to do this.

Example 1: Balance the following redox reaction using the ion-electron method:

$$
\mathrm{NO}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{SO}_{2}
$$

## Solution: Following the steps above:

[1] Nitrogen gets oxidized, and sulphur is reduced, so the half-reactions are:

$$
\mathrm{NO} \rightarrow \mathrm{NO}_{3}^{-} \quad \mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{SO}_{2}
$$

[2] We balance the atoms:

$$
\begin{array}{lr}
\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-} & \mathrm{SO}_{4}^{2-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} & 4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

[3] We add electrons so that the charge balances:

$$
\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \quad 4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{e}^{-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

[4] And finally we cancel the electrons:

$$
\begin{aligned}
& 2 \mathrm{NO}_{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NO}_{3}^{-}+8 \mathrm{HN}^{+}+8 \mathrm{e}^{-} \\
& \frac{412 \mathrm{H}^{+}+3 \mathrm{SO}_{4}^{2-}+6 \mathrm{e}^{-}}{} \rightarrow 3 \mathrm{SO}_{2}+\phi^{2} \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{NO}^{2}+4 \mathrm{H}^{+}+3 \mathrm{SO}_{4}^{2-} \rightarrow 2 \mathrm{NO}_{3}^{-}+3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

[5] With sulphates and nitrates, this reaction is not likely to take place in basic solution, but if it were, we would not be able to have $\mathrm{H}^{+}$in the final equation. We would add $\mathrm{OH}^{-}$ to both sides to cancel the $\mathrm{H}^{+}$that is there:

$$
\begin{array}{r}
2 \mathrm{NO}_{\mathrm{NO}}+4 \mathrm{H}^{+}+3 \mathrm{SO}_{4}^{2-} \rightarrow 2 \mathrm{NO}_{3}^{-}+3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{NO}+4 \mathrm{H}^{+}+4 \mathrm{OH}^{-}+3 \mathrm{SO}_{4}^{2-} \rightarrow 2 \mathrm{NO}_{3}^{-}+3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{OH}^{-} \\
2 \mathrm{NO}+2 / 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{SO}_{4}^{2-} \rightarrow 2 \mathrm{NO}_{3}^{-}+3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{OH}^{-} \\
2 \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{SO}_{4}^{2-} \rightarrow 2 \mathrm{NO}_{3}^{-}+3 \mathrm{SO}_{2}+4 \mathrm{OH}^{-}
\end{array}
$$

## EXERCISES

A. For each redox equation, determine (a) the oxidation half-reaction, (b) the reduction half-reaction, and (c) the balanced redox reaction.

1) $\mathrm{Fe}^{3+}+\mathrm{Sn}^{2+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Sn}^{4+}$
2) $\mathrm{Fe}^{2+}+\mathrm{ClO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
3) $\mathrm{Cu}+\mathrm{NO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
4) $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{3}{ }^{2-}+\mathrm{Ag}+\mathrm{H}^{+}$
5) $\mathrm{MnO}_{4}^{-}+\mathrm{Cl}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
6) $\mathrm{MnO}_{4}^{-}+\mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+\mathrm{S}+\mathrm{OH}^{-}$
7) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{I}^{-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{I}_{2} \quad$ *acidic solution
8) $\mathrm{MnO}_{4}^{-}+\mathrm{Sn} \rightarrow \mathrm{MnO}_{2}+\mathrm{Sn}(\mathrm{OH})_{3}^{-}$ *basic solution
9) $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

## SOLUTIONS

A. (1)a) $\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$
(b) $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$
(c) $\mathrm{a}+2 \mathrm{~b}: 2 \mathrm{Fe}^{3+}+\mathrm{Sn}^{2+} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{Sn}^{4+}$
(2)a) $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$(b) $\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
(c) $6 \mathrm{a}+\mathrm{b}: 6 \mathrm{Fe}^{2+}+\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow 6 \mathrm{Fe}^{3+}+\mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
(3)a) $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$(b) $\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$
(c) $3 \mathrm{a}+2 \mathrm{~b}: 3 \mathrm{Cu}+2 \mathrm{NO}_{3}^{-}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{Cu}^{2+}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
(4)a) $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{3}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$(b) $\mathrm{Ag}_{2} \mathrm{O}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{a}+\mathrm{b}: \mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{3}{ }^{2-}+2 \mathrm{Ag}+2 \mathrm{H}^{+}$
(5)a) $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$(b) $\mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
(c) $5 \mathrm{a}+2 \mathrm{~b}: 2 \mathrm{MnO}_{4}^{-}+10 \mathrm{Cl}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
(6)a) $\mathrm{S}^{2-} \rightarrow \mathrm{S}+2 \mathrm{e}^{-}$(b) $\mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$
(c) $3 \mathrm{a}+2 \mathrm{~b}: 2 \mathrm{MnO}_{4}^{-}+3 \mathrm{~S}^{2-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{~S}+8 \mathrm{OH}^{-}$
(7)a) $2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$(b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{e}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(c) $3 \mathrm{a}+\mathrm{b}: \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{I}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
(8)a) $\mathrm{Sn}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Sn}(\mathrm{OH})_{3}^{-}+2 \mathrm{e}^{-}$(b) $\mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$
(c) $3 \mathrm{a}+2 \mathrm{~b}: 2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Sn}+\mathrm{OH}^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{Sn}(\mathrm{OH})_{3}^{-}$
(9)a) $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$(b) $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{a}+\mathrm{b}: 2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

