Integration by Parts Quiz

A general method of integration is integration by parts. The pattern is given by:
\[\int u \, dv = uv - \int v \, du \]

MULTIPLE CHOICE
Identify the letter of the choice that best completes the statement, or answers the question:

1. If the integrand involves a logarithm, an inverse trigonometric function, or a tough function to integrate whose derivative is easily calculated, that function should be:
 - the dv in \[u \, dv \]
 - the u in \[u \, dv \]

2. If the integrand involves a polynomial multiplied by a sine or a cosine, an exponential function, or some easily-integrated function, the polynomial should be:
 - the dv in \[u \, dv \]
 - the u in \[u \, dv \]

3. Integration by parts is called that because
 - it is the inverse of the Product Rule for differentiation
 - the technique only performs a part of the original integration
 - the integrand is split into parts
 - it is the inverse of the Chain Rule for differentiation

4. Complete: \[\int x \sin x \, dx = \sin x - _____ + c, \] where c is a constant
 - \[x \cos x \]
 - \[\sin^2 x \]
 - \[x \]
 - none of the above

5. Complete: \[\int x \cos x \, dx = \cos x + _____ + c, \] where c is a constant
 - \[\sin x \]
 - \[x \sin x \]
 - \[x \]
 - none of the above
6. Complete: \(\int x \cos 2x \, dx = \frac{x}{2} \sin 2x + ____ + c \), where \(c \) is a constant

 A. \(\cos 2x \)
 B. \(2 \cos x \)
 C. \(\frac{1}{2} \cos 2x \)
 D. none of the above

7. Complete: \(\int x^2 \cos x \, dx = ____ + 2x \cos x - 2 \sin x + c \), where \(c \) is a constant

 A. \(x^2 \cos x \)
 B. \(\sin^2 x \)
 C. \(x^2 \sin x \)
 D. none of the above

8. Complete: \(\int x^2 \ln x \, dx = ____ - \frac{x^3}{9} + c \), where \(c \) is a constant

 A. \(\frac{x^3}{3} \ln x \)
 B. \(\ln x \)
 C. \(\frac{1}{x} \)
 D. none of the above

9. Complete: \(\int \ln x \, dx = ____ - x + c \), where \(c \) is a constant

 A. \(x \)
 B. \(x \ln x \)
 C. \(\ln x \)
 D. none of the above

10. Complete: \(\int x^3 e^x \, dx = (______) \cdot e^x + c \), where \(c \) is a constant

 A. \(x^3 \)
 B. \(x^3 + 3x^2 - 6x + 6 \)
 C. \(x^3 - 3x^2 + 6x - 6 \)
 D. none of the above

Bonus:

11. Complete: \(\int \cos^2 x \, dx = ____ + \frac{x}{2} + c \), where \(c \) is a constant

 A. \(x^2 \)
 B. \(\frac{\cos x \sin x}{2} \)
 C. \(\sin^2 x \)
 D. none of the above

SOLUTIONS

11. B