Advanced Trigonometry

SINE AND COSINE IDENTITIES

\[\sin \theta = \sin (\theta + 2k\pi), \ k \text{ is an integer} \]
\[\sin (-\theta) = -\sin \theta \]
\[\sin (\theta \pm \pi) = -\sin \theta \]
\[\sin (\pi - \theta) = \sin \theta \]

* These are the same for other odd functions.

\[\cos \theta = \cos (\theta + 2k\pi), \ k \text{ is an integer} \]
\[\cos (-\theta) = \cos \theta \]
\[\cos (\theta \pm \pi) = -\cos \theta \]
\[\cos (\pi - \theta) = -\cos \theta \]

** These are the same for other even functions.

RECIPROCAL AND QUOTIENT IDENTITIES

\[\sec \theta = \frac{1}{\cos \theta}, \ \csc \theta = \frac{1}{\sin \theta}, \ \cot \theta = \frac{1}{\tan \theta} \]
\[\tan \theta = \frac{\sin \theta}{\cos \theta}, \ \cot \theta = \frac{\cos \theta}{\sin \theta} \]

PYTHAGOREAN IDENTITIES

\[\sin^2 \theta + \cos^2 \theta = 1 \]
\[1 + \cot^2 \theta = \csc^2 \theta \]
\[1 + \tan^2 \theta = \sec^2 \theta \]

COFUNCTION IDENTITIES

\[\sin (\theta \pm \frac{\pi}{2}) = \pm \cos \theta \]
\[\cos (\theta \pm \frac{\pi}{2}) = \mp \sin \theta \]

RECIPROCALS AND COFUNCTIONS

<table>
<thead>
<tr>
<th>Reciprocals</th>
<th>Cofunctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin \theta)</td>
<td>(\cos \theta)</td>
</tr>
<tr>
<td>(\cos \theta)</td>
<td>(\tan \theta)</td>
</tr>
<tr>
<td>(\tan \theta)</td>
<td>(\cot \theta)</td>
</tr>
<tr>
<td>(\sec \theta)</td>
<td>(\csc \theta)</td>
</tr>
</tbody>
</table>

PRINCIPAL VALUES OF INVERSE FNS

\[\arcsin \frac{-\pi}{2} \leq y \leq \frac{\pi}{2} \]
\[\arccos 0 \leq y < \frac{\pi}{2} \]
\[\arctan \frac{-\pi}{2} < y \leq \frac{\pi}{2} \]
\[\arccot 0 < y < \frac{\pi}{2} \]

SPECIAL TRIANGLES

SUM & DIFFERENCE IDENTITIES

\[\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \]
\[\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \]
\[\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \]

DOUBLE AND HALF ANGLE IDENTITIES

\[\sin 2\theta = 2 \sin \theta \cos \theta \]
\[\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta \]
\[\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} \]

IDENTITY FOR \(c \sin k\theta + b \cos k\theta \)

\[c \sin k\theta + b \cos k\theta = a \sin (k\theta + \beta) \]

where:

\[a = \sqrt{b^2 + c^2} \]
\[\beta = \tan^{-1} \frac{b}{c} \]

© 2016 Vancouver Community College Learning Centre.
Student review only. May not be reproduced for classes.

Authored by Gordon Wong
ANGULAR MOTION
\[\theta = \frac{s}{r} \] \text{same units}
\[r = \text{radius} \]
\[\theta = \text{central angle (rad)} \]
\[\omega = \frac{\theta}{t} \]
\[\omega = \text{angular speed} \]
\[v = r \omega \]
\[v = \text{linear speed} \]
\[\text{at a point on rim} \]
\[t = \text{time} \]

DEGREES, MINUTES AND SECONDS

\[1^\circ = 60' \]
\[1' = 60'' \]

POLAR COORDINATES
Polar \(\rightarrow \) Rectangular \((r, \theta) \rightarrow (x, y)\)

\[x = r \cos \theta \]
\[y = r \sin \theta \]

Rectangular \(\rightarrow \) Polar \((x, y) \rightarrow (r, \theta)\)

\[r = \sqrt{x^2 + y^2} \]
\[\theta = \cos^{-1} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = \frac{x}{r} \]
\[\theta = \sin^{-1} \left(\frac{y}{\sqrt{x^2 + y^2}} \right) = \frac{y}{r} \]

VECTORS
if \(\vec{u} = (a, b) \) then: \(\vec{u} + \vec{v} = (a + c, b + d) \)
\[\vec{v} = (c, d) \]
\[||\vec{u}|| = \sqrt{a^2 + b^2} \]

ANGLES OF ELEVATION AND DEPRESSION

SINE AND COSINE LAWS
Cosine Law (use with SAS or SSS)
\[a^2 = b^2 + c^2 - 2bc \cos A \]
\[b^2 = a^2 + c^2 - 2ac \cos B \]
\[c^2 = a^2 + b^2 - 2ab \cos C \]

Sine Law (use with AAS, SSA)
\[\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \]
[Note: the SSA case may yield 0, 1 or 2 solutions.]

ANGLE SPECIFICATION TECHNIQUES

Directed Angles
- used for trig class
- +ve angles: start at the positive x-axis and go CCW
- -ve angles: start at the positive x-axis and go CW
- angles higher than 360° or 2\(\pi \) rad are possible

Heading, Bearing or Course
- used by airplanes and boats
- start at North, go CW
- angle of arrival (coming into a destination) is 180° away from the angle leaving a location (e.g., if angle of departure is 30°, angle of arrival will be 210°)

Compass Directions
- two forms:
 1) “N 50° E” starts at North or South and moves CW or CCW eastward or westward
 2) “65° south of west” starts at second compass point and moves CW or CCW toward the first compass point
- in form (2), every direction can be expressed two different ways

Wind Direction
- used in flying, weather reports
- wind direction is the direction the wind is blowing \textit{from}, not \textit{to}, e.g., a west wind blows from west to east
- find wind direction using above techniques; draw the vector pointing 180° away from the indicated angle