Lines
Slopes, Intercepts & Equations

SLOPE
\[m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}, \]
- it's positive if the line rises to the right
- it's negative if the line falls to the right
- it's zero if the line is horizontal
- it's undefined if the line is vertical

SLOPE-INTERCEPT FORM
\[y = mx + b \]
where \(m = \) slope of the line
\(b = y\)-intercept

POINT-SLOPE FORM
\[y - y_1 = m(x - x_1) \]

STANDARD FORM
\[Ax + By = C \]
\(A, B, C \) are integers; \(A > 0 \)

FINDING INTERCEPTS
A. X-INTERCEPT
 1. Set \(y = 0 \) in the equation.
 2. Solve for \(x \).
B. Y-INTERCEPT
 1. Set \(x = 0 \) in the equation.
 2. Solve for \(y \).

PARALLEL LINES
Non-vertical lines are parallel if and only if they have the same slope and different \(y \)-intercepts.
(All vertical lines are parallel.)

PERPENDICULAR LINES
Non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other.
This means the product of their slopes is \(-1\). If \(m \) is the slope of one line, then \(- \frac{1}{m}\) is the slope of the other.
(Vertical lines are perpendicular to horizontal lines.)

DISTANCE FORMULA
\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

MIDPOINT FORMULA
coordinates are: \(\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \)

VERTICAL & HORIZONTAL LINES
Vertical lines have equations of the form \(x = a \). They are parallel to the \(y \)-axis. All points on the line have the same first coordinate.
Horizontal lines have equations of the form \(y = b \). They are parallel to the \(x \)-axis. All points on the line have the same second coordinate.
Example 1: Express in standard form: y = \frac{5}{7}x + \frac{4}{7}.

Solution: Isolate the constant term and get the x and y terms on the other side.

\[y = \frac{5}{7}x + \frac{4}{7} \]
\[-\frac{5}{7}x + y = \frac{4}{7} \]

We need all the numbers in the problem to be integers, and the coefficient on x needs to be positive. We can multiply the entire equation by the LCD to get rid of the fractions and by -1 to get a positive coefficient for x:

\[7 \times (-\frac{5}{7}x + y) = 7 \times \frac{4}{7} \]
\[-5x + 7y = 4 \]
\[-1 \times (-5x + 7y) = -1 \times 4 \]
\[5x - 7y = -4 \]

There are several methods to find an equation of a line. All of them involve finding the slope first, if it hasn’t already been given to you.

Example 2: Find the equation of the line that has a slope of 5 and a y-intercept of 8.

Solution: We can use y = mx + b. \(m \) is the slope and \(b \) is the y-intercept.

\[m = 5; \ b = 8 \]
\[y = mx + b \]
\[y = 5x + 8 \]

Example 3: Find the equation of the line that has a slope of 3 and contains the point (5, 4).

Solution: We can use the point-slope equation, \(y - y_1 = m(x - x_1) \). \(m \) is the slope and (\(x_1, y_1 \)) is the point.

\[m = 3; \ (x_1, y_1) = (5, 4) \]
\[y - y_1 = m(x - x_1) \]
\[y - 4 = 3(x - 5) \]
\[y - 4 = 3x - 15 \]
\[y = 3x - 11 \]

Example 4: Find the equation of the line containing the point (4, 4) and (−6, −1).

Solution: This time we do not know the slope, so we must calculate it.

\[m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 4}{-6 - 4} = \frac{-5}{-10} = \frac{1}{2} \]

Now that we have the slope, we can use either point to finish the equation.

\[y - y_1 = m(x - x_1) \]
\[y - (4) = \frac{1}{2}(x - 4) \]
\[y - 4 = \frac{1}{2}x - 2 \]
\[y = \frac{1}{2}x + 2 \]
Two lines are **parallel** if their slopes are the same, i.e. \(m_1 = m_2 \).

Two lines are **perpendicular** if the product of their slopes is \(-1\), i.e. \(m_1m_2 = -1 \). We also say that the slopes of perpendicular lines are **negative reciprocals** of each other, i.e. \(m_1 = \frac{-1}{m_2} \). The negative reciprocal of \(\frac{2}{3} \) is \(-\frac{3}{2} \), and the negative reciprocal of 5 is \(-\frac{1}{5} \).

Example 5: Find the equation of the line parallel to \(3x + y = 5 \) containing the point \((1, -2)\).

Solution: The best way to find the slope is to convert to slope-intercept form:

\[
3x + y = 5 \\
y = -3x + 5
\]

It’s \(y = mx + b \), so \(m = -3 \). Now use the point-slope equation.

\[
y - y_1 = m(x - x_1) \\
y - (-2) = -3(x - (1)) \\
y + 2 = -3x + 3 \\
y = -3x + 1
\]

Example 6: Find the equation of the line perpendicular to \(3x + y = 5 \) containing the point \((1, -2)\).

Solution: Again, we need to know the slope of the line we’ve been asked for. From the previous example, \(m = -3 \). The negative reciprocal of \(-3\) is \(\frac{1}{3} \), so \(\frac{1}{3} \) is the slope of any line perpendicular to \(3x + y = 5 \).

\[
y - y_1 = m(x - x_1) \\
y - (-2) = \frac{1}{3}(x - (1)) \\
y + 2 = \frac{1}{3}x - \frac{1}{3} \\
y = \frac{1}{3}x - \frac{1}{3}
\]

EXERCISES

A. Write in slope-intercept form:

1) \(y - 3 = 2(x - 4) \)
2) \(y + 2 = 3(x + 5) \)
3) \(y - 6 = 2(x - 1) \)
4) \(x - y = 4 \)
5) \(2x + 3y = 6 \)
6) \(x - 4y = 7 \)

B. Write in standard form:

1) \(y = 3x + 6 \)
2) \(y = -\frac{1}{2}x + \frac{5}{2} \)
3) \(y = \frac{5}{6}x - \frac{2}{3} \)
4) \(y - 7 = 4(x + 2) \)
5) \(y - \frac{3}{4} = \frac{1}{2}(x + 5) \)
6) \(y + 1 = -\frac{1}{7}(x - 3) \)

C. Find the x-intercept and y-intercept:

1) \(y = 2x + 6 \)
2) \(y - 4 = 3(x + 5) \)
3) \(2x - 3y = -6 \)
4) \(4x + 6 = 3y - 2 \)

D. Find the distance between these pairs of points, and find the midpoint of the points:

1) \((3, 5) \text{ and } (-1, 7)\)
2) \((4, 7) \text{ and } (0, -3)\)
3) \((8, -1) \text{ and } (-4, 5)\)
4) \((2, 6) \text{ and } (-1, 10)\)
5) \((-6, \frac{1}{2}) \text{ and } (4, \frac{9}{2})\)
6) \((5, 5) \text{ and } (-1, \frac{7}{2})\)
E. Find the equations of the lines with these slopes and y-intercepts:

1) \(m = 4, \ b = 3 \)
2) \(m = -3, \ b = 0 \)
3) \(\text{slope} = 0, \ y\text{-intercept} = -1 \)
4) \(\text{slope} = -\frac{1}{2}, \ y\text{-intercept} = -5 \)
5) \(\text{y-intercept} = 4, \ \text{slope} = 0 \)

F. Find the equations of the lines with these slopes, and that contain these points:

1) \(m = 5; \ (1, 3) \)
2) \(m = -4; \ (3, -5) \)
3) \(\text{slope} = -2, \ \text{point} = (-5, -4) \)
4) \(\text{point} = (3, 2), \ \text{zero slope} \)
5) \(\text{point} = (1, 1), \ \text{slope is} \ \frac{1}{3} \)
6) \(\text{slope is equal to that of} \ y = 2x - 5; \ (3, 8) \)

G. Find the equations of the lines that contain these pairs of points:

1) \((3, 5), (4, 0) \)
2) \((-1, 2), (3, 7) \)
3) \((2, 6), (0, -2) \)
4) \((4, 2), (6, 2) \)
5) \((1, 3), (1, 5) \)
6) \((1, 3), (1, 5) \)

H. Find the equations of the lines that are parallel to the given lines, and contain the given points:

1) \(y = 5x - 2, \ (3, 11) \)
2) \(2x + y = 5, \ (1, -2) \)
3) \(3x - 4y = 6, \ (2, 3) \)
4) \(-x - 5y = 3, \ (-2, -4) \)
5) \(2x - 4y = -13 \)
6) \(x + 7y = -4 \)

I. Find the equations of the lines that are perpendicular to the given lines, and contain the given points:

1) \(y = -2x - 5, \ (4, 6) \)
2) \(4x - 3y = 7, \ (8, -2) \)
3) \(-2x + 5y = 13, \ (-5, 1) \)
4) \(x + 7y = 10, \ (-1, 5) \)
5) \(x - y = 3, \ (6, -5) \)
6) \(x - y = 3, \ (6, -5) \)

Solutions

A.

1) \(y = 2x - 5 \)
2) \(y = 3x + 13 \)
3) \(y = 2x + 4 \)
4) \(y = x - 4 \)
5) \(y = -\frac{2}{3}x + 2 \)
6) \(y = \frac{1}{4}x - \frac{3}{4} \)

B.

1) \(3x - y = -6 \)
2) \(x + 2y = 5 \)
3) \(5x - 6y = 4 \)
4) \(4x - y = -15 \)
5) \(2x - 4y = -13 \)
6) \(x + 7y = -4 \)

C.

1) \(\text{x-int:} -3, \ \text{y-int:} 6 \)
2) \(\text{x-int:} 6 \)
3) \(\text{x-int:} 19 \)
4) \(\text{x-int:} -3, \ \text{y-int:} 2 \)
5) \(\text{x-int:} -2, \ \text{y-int:} \frac{8}{3} \)

D.

1) \(d = 2\sqrt{5}, \ \text{mdpt:} (1, 6) \)
2) \(d = 2\sqrt{29}, \ \text{mdpt:} (2, 2) \)
3) \(d = 6\sqrt{5}, \ \text{mdpt:} (2, 2) \)
4) \(d = 5, \ \text{mdpt:} (\frac{1}{2}, 8) \)
5) \(d = 2\sqrt{29}, \ \text{mdpt:} (-1, \frac{5}{2}) \)
6) \(d = \frac{3}{2}\sqrt{17}, \ \text{mdpt:} (2, \frac{17}{4}) \)

E.

1) \(y = 4x + 3 \)
2) \(y = -3x \)
3) \(y = -1 \)
4) \(y = -\frac{1}{2}x - 5 \)
5) \(y = 4 \)

F.

1) \(y = 5x - 2 \)
2) \(y = -4x + 7 \)
3) \(y = -2x - 14 \)
4) \(y = 2 \)
5) \(y = \frac{1}{3}x + \frac{2}{3} \)
6) \(y = 2x + 2 \)

G.

1) \(y = -5x + 20 \)
2) \(y = \frac{5}{4}x + \frac{13}{4} \)
3) \(y = 4x - 2 \)
4) \(y = 2 \)
5) \(x = 1 \)

H.

1) \(y = 5x - 4 \)
2) \(y = -2x \)
3) \(y = \frac{3}{4}x + \frac{3}{2} \)
4) \(y = -\frac{1}{5}x - \frac{23}{5} \)
5) \(y = 3 \)

I.

1) \(y = \frac{1}{2}x + 4 \)
2) \(y = -\frac{3}{4}x + 4 \)
3) \(y = -\frac{5}{2}x - \frac{23}{2} \)
4) \(y = 7x + 12 \)
5) \(y = -x + 1 \)