Series & Parallel Circuits

	CONNECTED IN SERIES	CONNECTED IN PARALLEL
Voltage	$V_T = V_1 + V_2 + V_3 + \cdots$	$V_T = V_1 = V_2 = V_3 = \cdots$
Current	$\mathbf{I}_{T} = \mathbf{I}_{1} = \mathbf{I}_{2} = \mathbf{I}_{3} = \cdots$	$\mathbf{I}_{T} = \mathbf{I}_{1} + \mathbf{I}_{2} + \mathbf{I}_{3} + \cdots$
Resistance	$R_{T} = R_1 + R_2 + R_3 + \cdots$	$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \cdots$
Power	$P_{T} = P_{1} + P_{2} + P_{3} + \cdots$	$P_T = P_1 + P_2 + P_3 + \cdots$

Ohm's Law:
$$V = IR$$
 power: $P = VI = I^2R = \frac{V^2}{R}$

n identical resistors in <u>series</u>: $R_T = nR$

n identical resistors in <u>parallel</u>: $R_T = \frac{R}{n}$

short cut for 2 resistors in parallel: $R_T = \frac{R_1 R_2}{R_1 + R_2}$

EXERCISES

A. Considering the following circuit, complete the table:

	R ₁	R ₂	R ₃	RTOTAL
Voltage (V)				12
Current (A)				
Resistance (Ω)	150	220	470	
Power (W)				

B. Considering the following circuit, complete the table:

	K ₁	K ₂	K 3	KTOTAL
Voltage (V)				15
Current (A)				
Resistance (Ω)	120	180	270	
Power (W)				

C. Considering the following circuit, complete the table:

	R ₁	R ₂	Rз	R ₄	RTOTAL
Voltage (V)					10
Current (A)					
Resistance (Ω)	56	27	47	15	
Power (W)					

- D. Twenty resistors, each with a resistance of 22 Ω , are connected in series. What is the total resistance?
- E. Ten resistors, each with a resistance of 1000 Ω , are connected in parallel. What is the total resistance?
- F. Three resistors can be connected in a variety of ways to obtain eight different resistances. What resistances can be obtained with each of the following? [Hint: First, figure out what four configurations there can be with three resistors.]

1)
$$18 \Omega$$
, 56Ω , 82Ω

SOLUTIONS

R_T 6.7 12 2.1 3.1 .014 .014 .014 .014 150 220 470 840 .045 .096 .171 **P** .031

B.				
	R ₁	R ₂	R ₃	R⊤
٧	15	15	15	15
I	0.13	.083	.056	0.26
R	120	180	270	56.8
Р	1.9	1.3	0.83	4.0

		С .						
		R ₁	R ₂	R₃	R ₄	R⊤		
	٧	4.5	2.2	6.7	3.3	10		
	I	.080	.080	0.14	0.22	0.22		
	R	56	27	47	15	45		
	Р	0.36	0.17	0.95	0.74	2.2		

D. 440 Ω E. 100 Ω

F. (1) 12 Ω , 16 Ω , 36 Ω , 39 Ω , 51 Ω , 71 Ω , 96 Ω , 156 Ω

(2) 103 Ω , 173 Ω , 223 Ω , 253 Ω , 414 Ω , 480 Ω , 602 Ω , 1020 Ω