Series \& Parallel Circuits

	CONNECTED IN SERIES	CONNECTED IN PARALLEL
Voltage	$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\cdots$	$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\cdots$
Current	$\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}=\cdots$	$\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\cdots$
Resistance	$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots$	$\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\cdots$
Power	$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\cdots$	$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\cdots$

Ohm's Law: $V=I R \quad$ power: $P=V I=I^{2} R=\frac{V^{2}}{R}$
n identical resistors in series: $\quad R_{T}=n R$
n identical resistors in parallel: $\quad R_{T}=\frac{R}{n}$
short cut for 2 resistors in parallel: $\quad R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

EXERCISES

A. Considering the following circuit, complete the table:

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R 2}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\text {total }}$
Voltage (V)				12
Current (A)				
Resistance (Ω)	150	220	470	
Power (W)				

B. Considering the following circuit, complete the table:

	$\mathbf{R 1}_{\mathbf{1}}$	$\mathbf{R 2}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R T O T A L}$
Voltage (V)				15
Current (A)				
Resistance (Ω)	120	180	270	
Power (W)				

C. Considering the following circuit, complete the table:

	$\mathbf{R 1}_{1}$	$\mathbf{R 2}_{2}$	$\mathbf{R 3}_{3}$	$\mathbf{R}_{\mathbf{4}}$	Rtotal
Voltage (V)					10
Current (A)					
Resistance (Ω)	56	27	47	15	
Power (W)					

D. Twenty resistors, each with a resistance of 22Ω, are connected in series. What is the total resistance?
E. Ten resistors, each with a resistance of 1000Ω, are connected in parallel. What is the total resistance?
F. Three resistors can be connected in a variety of ways to obtain eight different resistances. What resistances can be obtained with each of the following? [Hint: First, figure out what four configurations there can be with three resistors.]

1) $18 \Omega, 56 \Omega, 82 \Omega$
2) $220 . \Omega, 330 . \Omega, 470 . \Omega$

SOLUTIONS

A.

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{T}}$
\mathbf{V}	2.1	3.1	6.7	$\mathbf{1 2}$
\mathbf{I}	.014	.014	.014	.014
\mathbf{R}	$\mathbf{1 5 0}$	$\mathbf{2 2 0}$	$\mathbf{4 7 0}$	840
\mathbf{P}	.031	.045	.096	.171
D.	440Ω	$\mathrm{E} .100 \Omega$		

B.				
	R1	R2	R3	RT
V	15	15	15	15
I	0.13	. 083	. 056	0.26
R	120	180	270	56.8
P	1.9	1.3	0.83	4.0

C.					
	R1	R2	R3	R4	RT
V	4.5	2.2	6.7	3.3	10
I	. 080	. 080	0.14	0.22	0.22
R	56	27	47	15	45
P	0.36	0.17	0.95	0.74	2.2

F. (1) $12 \Omega, 16 \Omega, 36 \Omega, 39 \Omega, 51 \Omega, 71 \Omega, 96 \Omega, 156 \Omega$
(2) $103 \Omega, 173 \Omega, 223 \Omega, 253 \Omega, 414 \Omega, 480 \Omega, 602 \Omega, 1020 \Omega$

