
The Horse and Cart Problem

The horse and cart problem is an application of Newton's Third Law, which says: For every action, there is an equal and opposite reaction. If A exerts a force on B, then B will exert an equal and opposite force on A.

When the horse walks forward and pulls on the cart, the following forces are present:

	Action		Reaction
F _{HG}	The horse pushes against the	F _{GH}	The ground pushes back on the
	ground.		horse.
Рнс	The horse's body pulls on the	Рсн	The cart resists movement and pulls
	cart.		back on the horse's body.
fcg	The cart wheel pushes against	fgc	The friction with the ground resists
	the ground.		the cart's movement.

Note that the action-reaction pairs of forces affect the motions of different objects. With this in mind, the net force...

- a) on the cart is P_{HC} f_{GC}
- b) on the horse is $F_{GH} P_{CH}$
- c) on the ground is $F_{HG} f_{CG}$

since the cart moves when the horse's pull overcomes friction ($P_{HC} > f_{GC}$) since the horse moves when he pushes the ground enough to pull the cart ($F_{GH} > P_{CH}$) since the horse-cart system moves when the horse overcomes friction ($F_{GH} > P > f_{GC}$).

In summary, although the action-reaction forces may cancel, the net force resulting from different interactions of forces allows for movement, relative to the ground.

