## The Problem Solver's Toolkit 2

## MIXTURE PROBLEMS

\# of pounds $\times$ Cost per pound $=$ Value

|  | \# of <br> pounds | Cost per <br> pound | Value |
| :---: | :---: | :---: | :---: |
| Brand A |  |  |  |
| Brand B |  |  |  |
| Total |  |  |  |

## SOLUTION PROBLEMS

Amt. solution $\times \%$ solute $=$ Amt. solute

|  | Amt of <br> solution | \% salt <br> (decimal) | Amt of <br> salt |
| :---: | :---: | :---: | :---: |
| Sol'n A |  |  |  |
| Sol'n B |  |  |  |
| Total |  |  |  |

If "pure salt" is added, that's $100 \%$ salt.
If "water" is added, that's $0 \%$ salt.

## DIGIT PROBLEMS

Let $\mathrm{t}=$ tens digit in the first number.
Let $\mathrm{u}=\mathrm{units}$ digit in the first number.
The value of the first number is $10 \mathrm{t}+\mathrm{u}$, and the value of the number with the digits reversed is $10 \mathrm{u}+\mathrm{t}$.

When the question says, "A number is," they are referring to the value of the number.

COST-SHARING PROBLEMS

|  | \# of <br> students | Cost per <br> student | Total <br> cost |
| :---: | :---: | :---: | :---: |
| Actual | $x$ | $\frac{500}{x}$ <br> (larger) | 500 |
| Possible | $x+2$ | $\frac{500}{x+2}$ <br> (smaller) | 500 |

Larger - Smaller $=$ Diff. in shares

MOTION WITH AIRPLANES \& BOATS AIRPLANES
Rate against wind (headwind)

$$
=\text { air speed }- \text { wind speed }=p-w
$$

Rate with wind (tailwind)

$$
=\text { air speed }+ \text { wind speed }=p+w
$$

BOATS
Rate against current (upstream)

$$
=\text { still water rate }-\mathrm{c}=\mathrm{b}-\mathrm{c}
$$

Rate with current (downstream)

$$
=\text { still water rate }+c=b+c
$$

## WORK PROBLEMS

Part done per hr. $\times$ Time $=$ Part of job done overall Let $\mathrm{t}=$ time working together

|  | Hrs. <br> Alone | Part done <br> per hr. | Hrs. <br> worked | Part <br> done <br> overall |
| :---: | :---: | :---: | :---: | :---: |
| A | 5 | $1 / 5$ | t | $\mathrm{t} / 5$ |
| B | 4 | $1 / 4$ | t | $\mathrm{t} / 4$ |
| Total job done: |  |  |  |  |
|  |  | 1 |  |  |

The total job done always adds up to 1 job.

## SPECIAL CASE

For problems where one person starts to work alone before the second person joins in:

Let $\mathrm{t}=$ time working together

|  | Hrs. Alone | Part done per hr. | Hrs. worked | Part done overall |
| :---: | :---: | :---: | :---: | :---: |
| A | 5 | 1/5 | t | t/5 |
| B | 4 | $1 / 4$ | $t+2$ | $(\mathrm{t}+2) / 4$ |
| B works alone 2 extra hours $\uparrow$ |  |  |  | 1 |

## INTEREST PROBLEMS

Example: A total of $\$ 1200$ is invested in two funds. One fund earns $3 \%$ interest and the other earns $5 \%$. The total interest earned is $\$ 54$. Find the amounts invested.

Solution 1: We can solve this using one variable.

Let $\mathrm{x}=$ the amount invested at $3 \%$.
Then $1200-\mathrm{x}$ is the amount invested at $5 \%$.

|  | Principal | Rate | Interest |
| :---: | :---: | :---: | :---: |
| At 3\% | x | .03 | .03 x |
| At 5\% | $1200-\mathrm{x}$ | .05 | $.05(1200-\mathrm{x})$ |
| Total | 1200 |  | 54 |

The Principal column should add up, and so should the Interest column. We can use the Interest column to make an equation:

$$
.03 x+.05(1200-x)=54
$$

Multiply by 100 to get rid of the decimals:

$$
\begin{aligned}
3 x+5(1200-x) & =5400 \\
3 x+6000-5 x & =5400 \\
-2 x+6000 & =5400 \\
6000-5400 & =2 x \\
600 & =2 x \\
300 & =x
\end{aligned}
$$

So $\$ 300$ was invested at $3 \%$, and the rest, $1200-\mathrm{x}=\$ 900$, was invested at 5\%.

Solution 2: We can also solve this using a system of equations:

Let $\mathrm{x}=$ the amount invested at $3 \%$.
Let $\mathrm{y}=$ the amount invested at $5 \%$.
(continued next column...)

|  | Principal | Rate | Interest |
| :---: | :---: | :---: | :---: |
| At 3\% | $x$ | .03 | $.03 x$ |
| At 5\% | $y$ | .05 | $.05 y$ |
| Total | 1200 |  | 54 |
|  |  |  |  |

The Principal column should add up, and so should the Interest column. We can use these columns to make a system of equations:

$$
\begin{align*}
x+y & =1200  \tag{1}\\
.03 x+.05 y & =54 \tag{2}
\end{align*}
$$

(2) $\times 100$
$3 x+5 y=5400$
(1) $\times 3$
$3 x+3 y=3600$

From here, we can use either substitution or elimination to solve the system, and we get:

$$
x=\$ 300, y=\$ 900
$$

## PICTURE FRAME

Example: A picture in its frame measures $60 \mathrm{~cm} \times 40 \mathrm{~cm}$. The painting has a border of fixed width on all sides. The total area of the border is $736 \mathrm{~cm}^{2}$. How wide is the border?


Total area (Picture and frame): $\mathrm{L} \times \mathrm{W}$ $=(60 \times 40)$
Area of picture: $1 \times w$

$$
=([60-2 x][40-2 x])
$$

Frame area $=$ Total area - Area of picture

