The Problem Solver's Toolkit 2

MIXTURE PROBLEMS

of pounds × Cost per pound = Value

	# of pounds	Cost per pound	Value
Brand A			
Brand B			
Total			

SOLUTION PROBLEMS

Amt. solution \times % solute = Amt. solute

	Amt of solution	% salt (decimal)	Amt of salt
Sol'n A			
Sol'n B			
Total			

If "pure salt" is added, that's 100% salt. If "water" is added, that's 0% salt.

DIGIT PROBLEMS

Let t = tens digit in the first number. Let u = units digit in the first number.

The value of the first number is 10t + u, and the value of the number with the digits reversed is 10u + t.

When the question says, "A number is," they are referring to the value of the number.

COST-SHARING PROBLEMS

	# of students	Cost per student	Total cost
Actual	х	(larger)	500
Possible	x + 2	$\frac{500}{x+2}$ (smaller)	500

Larger – Smaller = Diff. in shares

MOTION WITH AIRPLANES & BOATS AIRPLANES

Rate against wind (headwind) = air speed – wind speed = p – w Rate with wind (tailwind)

= air speed + wind speed = p + w

BOATS

Rate against current (upstream) = still water rate - c = b - c Rate with current (downstream) = still water rate + c = b + c

WORK PROBLEMS

Part done per hr. × Time = Part of job done overall

Let t = time working together

	Hrs. Alone	Part done per hr.	Hrs. worked	Part done	
				overall	
А	5	1⁄5	t	t∕₅	
В	4	1⁄4	t	t∕₄	

Total job done: Total job done: The total job done always adds up to 1 job.

SPECIAL CASE

For problems where one person starts to work alone before the second person joins in:

Let t = time working together

	Hrs.	Part done	Hrs.	Part
	Alone	per hr.	worked	done
				overall
А	5	1⁄5	t	t∕5
В	4	1⁄4	t + 2	(t + 2)/4
B works alone 2 extra hours ↑				1

INTEREST PROBLEMS		Principal	Rate	Interest	
	At 3%	Х	.03	.03x	
<i>Example:</i> A total of \$1200 is invested	At 5%	у	.05	.05y	
in two funds. One fund earns 3% interest	Total	1200		54	
and the other earns 5%. The total interest	The Prir	ncipal colur	nn sho	uld add up	o, and
invocted	so should the Interest column. We can				
invested.	use thes	se columns	to mal	ke a syste	m of
Solution 1: We can solve this using one	equation	าร:			
variable.			x + v	= 1200	(1)
		.03x	+ .05y	= 54	(2)
Let $x =$ the amount invested at 3%.			· -		() ()
Then 1200 – x is the amount invested at	$(2) \times 10$	0 3	3x + 5y	= 5400	(3)
5%.	$(1) \times 3$		3x + 3y	= 3600	(4)
	From he	ere, we can	use ei	ther subst	itution
Principal Rate Interest	or elimination to solve the system, and we				
At 3% x .03 .03x	get:				
At 5% 1200 - x .05 .05(1200 - x)		v – ¢20	0 - y = 0	¢000	
lotal 1200 54	x = 3300, y = 3900				
The Principal column should add up, and	PICTUR	RE FRAME			
so should the interest column. We can	Example: A nicture in its frame				
aguation:	measures 60 cm x 40 cm. The painting				
	has a border of fixed width on all sides.				
.03x + .05(1200 - x) = 54	The total area of the border is 736 cm ² .				
	How wide is the border?				
Multiply by 100 to get rid of the decimals:	60				
3x + 5(1200 - x) = 5400				1 x]↑
3x + 6000 - 5x = 5400					
-2x + 6000 = 5400					
6000 - 5400 = 2x		60 - 7	ZX		40
600 = 2x			40 - 2	2x	
300 = x				_	
So \$300 was invested at 3%, and the				x	
rest, 1200 – x = \$900, was invested at				*	+
5%.	Total ar	ea (Picture	and fra	ame). L x	W
Solution 2: We can also solve this using	=	(60×40)			••
a system of equations:	Area of				
	Area of		W 10 – 2,	v1)	
Let x = the amount invested at 3%.		([00 - 2X][40 - 2	~])	
Let $y =$ the amount invested at 5%.	Frame area = Total area – Area of picture				
(continued next column)					

