The Problem Solver's Toolkit 1

TRANSLATIONS

ADDING	w increased by 4	$w+4$
	2 more than k *	$\mathrm{k}+2$
	the sum of h and 8	h + 8
	the total of 6 and t	$6+\mathrm{t}$
	y exceeds x by 15 **	$y=x+15$
SUBTRACTING	7 decreased by x	$7-x$
	difference between k and 3	k-3
	2 less than h *	h-2
	y exceeds x by 15 **	$y-15=x$
MULTIPLYING	two-fifths of x	$\frac{2}{5} \mathrm{x}$
	fifty percent of z	50\% - z
	the product of 4 and n	4 n
	8 times b	8b
DIVIDING	k divided by 7	k/7
	the quotient of c and 4	c/4
	the ratio of f to 6	t/6

*- "More than" and "less than" are written backwards from the order they appear in the question.
** - "Exceeds" can be written either way.

CONSECUTIVE INTEGERS

three consecutive integers
three consecutive \{even/odd\} integers
three consecutive multiples of 4
$x, x+1, x+2$
$x, x+2, x+4$
$x, x+4, x+8$

AGE PROBLEMS

For ages in the future, add years to the age now. For ages in the past, subtract years from the age now.

6 years ago	now	5 years from now
4	10	15
$x-6$	x	$x+5$

I am 10. In how many years... $\quad 10+x$
I am 23. How many years ago... $23-x$

OPPOSITES

Two numbers are opposites... x and $-x$

COIN PROBLEMS

Number of coins	$\times \begin{gathered} \text { Vall } \\ \text { of } c i \end{gathered}$	$=$	Total value for that type of coin
Coin	Number	Value	Total
penny		1	
nickel		5	
dime		10	
quarter		25	

The "Value" and "Total" columns must be in the same unit (here, Φ).

If the total of number of all coins is given, you may have to represent one type as "part of the whole"...

PARTS OF THE WHOLE

"A metal rod measuring 20 cm is cut in two pieces..." The lengths of the pieces can be written: $x, 20-x$.
"A board 120 cm long is cut into three pieces. Two are the same length..." The three pieces can be written: x, x, 120-2x.
"Out of 18 coins, there are twice as many dimes as pennies, and the rest are nickels..." Pennies: x, dimes: $2 x$, nickels: $18-3 x$.

MOTION PROBLEMS

Think DiRT: Distance is Rate • Time.

Type of problem	Illustration	Key Relationships
One person travels, then a second traveller catches up after leaving from the same place at a later time.		$\mathrm{d}_{1}=\mathrm{d}_{2}$ First traveller has time t. Second traveller has time t-head start, such as t-3.
A traveller changes transportation or speed at some point during a trip.		$\mathrm{d}_{\text {total }}=\mathrm{d}_{1}+\mathrm{d}_{2}$
Two travellers leave the same place at the same time going in opposite directions.	START	$\mathrm{d}_{\text {total }}=\mathrm{d}_{1}+\mathrm{d}_{2}$
A traveller goes to a destination, and then returns to his starting place.		$\mathrm{d}_{1}=\mathrm{d}_{2}$

BUSINESS PROBLEMS

COMMISSIONS
$\mathrm{x} \% \times$ Total sales $=$ Commission
COST PROBLEMS
\# of items \times Cost/item $=$ Total value
INTEREST PROBLEMS
Principal \times Rate $=$ Interest
MARKDOWNS
$\mathrm{x} \% \times$ Original price $=$ Markdown
Original price - Markdown $=$ Sale price
MARKUPS
$\mathrm{x} \% \times$ Original price $=$ Markup
Original price + Markup = Sale price
PROFITS
Revenue - Expenses = Profit
SALES TAX
$x \% \times$ Marked Price $=$ Sales Tax

NUMBERS IN RATIOS

Two numbers have a ratio of 4 to $3 \ldots$
$4 x$ and $3 x$
Three numbers in the ratio 6:2:1...

$$
6 x, 2 x \text { and } x
$$

PERIMETER AND AREA PROBLEMS

	Perimeter	Area
Square	4 x	x^{2}
Rectangle W L	$\begin{gathered} 2 \mathrm{~L}+2 \mathrm{~W} \\ =2(\mathrm{~L}+\mathrm{W}) \end{gathered}$	L \times W
Triangle	$a+b+c$	1/2bh
	$2 \pi r=\pi d$	$\pi r^{2}=\frac{\pi d^{2}}{4}$

ANGLE PROBLEMS

complementary angles $\mathrm{x}, 90-\mathrm{x}$
supplementary angles $x, 180-x$
angles in a triangle $\quad a+b+c=180$
...in a right triangle
$a+b=90$
...in an isosceles

$$
\text { triangle } \quad a+2 b=180
$$

