Order of Operations

(BEDMAS)

When evaluating a mathematical expression, the operations must be done in a certain order. This order is sometimes called BEDMAS, after the first letters of the operations:

	Evaluate what's inside the parentheses first. If there are brackets within brackets, do the ones that are farthest inside first. This step includes anything under a square root sign, the numerator or denominator of a fraction, or an expression in an exponent.
Exponents: $_{\text {Division \& }}$Calculate the results of any exponential expressions. Since square roots can also be exponents, they should also be evaluated in this step.	
Addition \&	Evaluate these from left to right. Multiplication and division have equal priority in order of operations.
Subtraction:	Evaluate these last, from left to right. Addition and subtraction
also have equal priority.	

Let's try some examples:

1) $3+3 \times 4$
$=3+12 \quad$ (We multiply before we add.)
$=15 \quad$ (We add last.)
2) $(3+3) \times 4$
$=6 \times 4$ (We do the brackets first. We add, and now because we have one positive number in brackets, we remove them.)
$=24$ (We multiply, because it's the only step left.)
3) $2\left[2+2(3-6 \div 3 \times 4-9)+6^{2}\right]$
$=2\left[2+2(3-8-9)+6^{2}\right]$ (We start in the inside brackets. We multiply and divide, from left to right, first.)
$=2\left[\begin{array}{lll}2+2(& -14 &)\end{array} 6^{2}\right]$ (We subtract. Because the brackets contain a negative number, we must keep them.)
$=2[2+2(-14) \quad+36] \quad$ (We evaluate exponents before anything else.)
$=2[2-28+36]$
$=2 \times 10$
(The number in front of the brackets means multiplication. We do the square brackets next, and we multiply before we add or subtract.)
(We add and subtract from left to right. We can replace the brackets with a " \times " sign.)
A. Evaluate:
4) $(3+9 \times 2-4) \times 2+7 \times 6=$
5) $(6+5) \times 4-[1+2 \times 8]+12 \times 2=$
6) $-3 \times\left(6+3 \times 7-5^{2}\right) \times 2+6^{2} \div 9 \times 2=$
7) $\left(3^{3}+8 \div 4-5\right) \times 2+5 \times 9-\sqrt{16}$
8) $(9 \times 8-4 \times 3) \div 5-7+4\left(5 \times 3^{2}\right)=$
9) $19-[(4+4 \times 4+4) \div 3+7] \div 3=$
10) $(4+4) \times(4+4)+2-18 \div\left(5-2^{3}\right)=$
11) $3.5\left[7 \times 3+(-1)^{3}\right]+\frac{7-4 \times 3}{2^{2}+9 \div 3^{2}}=$
12) $\sqrt{\left(17^{2}-3^{2}\right) \times \frac{13-2^{3}}{2^{4}-2}}-\left[\left(2^{3} \times 3^{2}\right) \div\left(5^{(7-5)}-1\right)\right]^{2}=$

SOLUTIONS:

A. (1) 76
(2) 51
(3) -4
(4) 89
(5) 185
(6) 14
(7) 72
(8) 69
(9) 1

