Factoring Secrets: The ac-Method

This worksheet describes a method for factoring expressions of the type $a x^{2}+b x+c$.
This method is faster than the trial-and-error method.
Example 1: Factor $6 x^{2}-x-2$.

Solution:

Step 1: Identify a, b, and c for the expression.

$$
a=6, b=-1, c=-2
$$

Step 2: Multiply a by c (i.e. multiply the coefficient of the x^{2} term by the constant term).

$$
a c=-12
$$

Step 3: Determine the possible pairs of factors that could yield the product a•c:

$$
-12=-1 \times 12=-2 \times 6=-3 \times 4=-4 \times 3=-6 \times 2=-12 \times 1
$$

Step 4: Decide which of the pairs of factors will add up to b.

$$
\mathrm{b}=-1, \text { and }-4+3=-1
$$

Step 5: Replace the middle term by an equivalent expression using the two factors.

$$
6 x^{2}-x-2=6 x^{2}+(-4 x+3 x)-2=6 x^{2}-4 x+3 x-2
$$

Step 6: Factor by grouping.

$$
\begin{aligned}
6 x^{2}-4 x+3 x-2 & =\left(6 x^{2}-4 x\right)+(3 x-2) \\
& =2 x(3 x-2)+1(3 x-2) \\
& =(2 x+1)(3 x-2)
\end{aligned}
$$

Example 2: Factor $6 x^{2}+19 x+10$.

Solution:

Step 1: Identify a, b, and c for the expression.
$a=6, b=19, c=10$
Step 2: Multiply a by c (i.e. multiply the coefficient of the x^{2} term by the constant term). $a c=60$

Step 3: Determine the possible pairs of factors that could yield the product a•c:
$60=1 \times 60=2 \times 30=3 \times 10=4 \times 15=5 \times 12=6 \times 10$ and the negative versions of these.

Step 4: Decide which of the pairs of factors will add up to b.

$$
b=19, \text { and } 4+15=19
$$

Step 5: Replace the middle term by an equivalent expression using the two factors.

$$
6 x^{2}+19 x+10=6 x^{2}+15 x+4 x+10
$$

Step 6: Factor by grouping.

$$
\begin{aligned}
6 x^{2}+15 x+4 x+10 & =\left(6 x^{2}+15 x\right)+(4 x+10) \\
& =3 x(2 x+5)+2(2 x+5) \\
& =(3 x+2)(2 x+5)
\end{aligned}
$$

Example 3: Factor $6 x^{2}+x+1$.
Solution:
Step 1: Identify a, b, and c for the expression.

$$
a=6, b=1, c=1
$$

Step 2: Multiply a by c (i.e. multiply the coefficient of the x^{2} term by the constant term).

$$
a c=6
$$

Step 3: Determine the possible pairs of factors that could yield the product a.c:

$$
6=1 \times 6=2 \times 3=-1 \times-6=-2 \times-3
$$

Step 4: Decide which of the pairs of factors will add up to b. $b=1$, but none of the pairs will add up to 1 . This expression is not factorable.

With practice, Steps 3 and 4 could be performed mentally.

EXERCISES

A. Factor, if possible:

1) $6 x^{2}+11 x+3$
2) $6 x^{2}-7 x+2$
3) $6 x^{2}+11 x-10$
4) $10 x^{2}+7 x-6$
5) $20 x^{2}+7 x-6$
6) $5 x^{2}-x+3$
7) $6 x^{2}+11 x+4$
8) $6 x^{2}-25 x+24$
9) $4 x^{2}-4 x-15$
10) $7 x^{2}-2 x-3$

SOLUTIONS

A. (1) $(2 x+3)(3 x+1)$
(2) $(3 x-2)(2 x-1)$
(3) $(2 x+5)(3 x-2)$
(4) $(5 x+6)(2 x-1)$
(5) $(4 x+3)(5 x-2)$
(7) $(3 x+4)(2 x+1)$
$(8)(3 x-8)(2 x-3)$
(9) $(2 x-5)(2 x+3) \quad(10)$ Not factorable.

