Slope

The slope of a line is a numerical way of describing the "steepness" and the direction of the line. It tells you nothing about the position of the line-where it is on the xy-plane

To find the slope of a line from its equation, rewrite the equation in the form $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$, so that the y is isolated on one side. The coefficient on x is the slope (m).

Example 1: Find the slope of the equation $9 x+3 y=8$
Solution: Isolate the y , and then extract the x coefficient:

$$
\begin{aligned}
9 x+3 y & =8 \\
3 y & =-9 x+8 \\
y & =-3 x+8 / 3
\end{aligned}
$$

Therefore the slope is -3 .
To find the slope between two points, use the mnemonic "rise over run" to remember what to do. If the coordinates of the points are ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$):

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{\text { changein } \mathrm{y}}{\text { changein } \mathrm{x}}=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}
$$

Example 2: Find the slope of the line containing the points $(3,6)$ and $(7,10)$.
Solution: Use the rise-over-run formula:

$$
\begin{aligned}
m=\frac{\text { rise }}{\text { run }} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{10-6}{7-3} \\
& =\frac{4}{4}=1
\end{aligned}
$$

Therefore the slope is 1 .
Vertical lines have an infinite, or undefined, slope since there is no "run" to the line; they don't have an x component to divide by. Vertical lines have equations in the form " $x=a$ ".

Horizontal lines have a slope of 0 since there is no "rise" to the line; there's no y
component to divide into. Horizontal lines have equations in the form " $y=b$ ".

EXERCISES

A. Find the slope of the line:

1) $y=5 x-3$
2) $x=7$
3) $2 y=3 x+4$
4) $y=8$
5) $3 y+4 x=5$
B. Find the slope of the line passing through each pair of points:
6) $(1,2),(3,4)$
7) $(-3,5),(-9,10)$
8) $(-1,-3),(-9,-8)$
9) $(5,6),(3,6)$
10) $(4,8),(4,10)$

SOLUTIONS

A. (1) 5 (2) $3 / 2$ (3) $-4 / 3$ (4) undefined (5) 0
B. (1) 1 (2) $-5 / 6$ (3) undefined (4) $5 / 8$ (5) 0

