Learning Centre

Rates of Reaction

Consider the decomposition of dinitrogen pentoxide:

$$2 N_2 O_5 \rightarrow 4 NO_2 + O_2$$

dinitrogen nitrogen dioxide oxygen

Suppose the average rate of change in N_2O_5 concentration per second was determined to be -1.36×10^{-3} M/s at a particular moment:

$$\frac{\Delta[N_2O_5]}{\Delta t} = -1.36 \times 10^{-3} \text{ M}_{s}$$

Since 4 mol NO₂ are produced for every 2 mol of N_2O_5 used, the average rate of formation of NO₂ would be:

$$\frac{\Delta[NO_2]}{\Delta t} = \left(\frac{4}{2}\right) (1.36 \times 10^{-3} \text{ M}_{s}) = 2.72 \times 10^{-3} \text{ M}_{s}$$

Since 1 mol O_2 is produced for every 2 mol N_2O_5 that react, the average rate of formation of O_2 would be:

$$\frac{\Delta[O_2]}{\Delta t} = \left(\frac{1}{2}\right) (1.36 \times 10^{-3} \text{ M}_{s}) = 6.80 \times 10^{-4} \text{ M}_{s}$$

The average rate of reaction could also be written:

$$-\frac{1}{2}\frac{\Delta[N2O5]}{\Delta t} = \frac{1}{4}\frac{\Delta[NO2]}{\Delta t} = \frac{\Delta[O2]}{\Delta t} = 6.80 \times 10^{-4} \text{ M}_{s}$$

Note: The units M_s could also be written as ${}^{mol}\!L_s$, mol $L^{-1}s^{-1}$ or M s^{-1} .

In general, for the reaction:

$$aA + bB \rightarrow cC + dD$$

the rate of reaction is defined by:

rate =
$$-\frac{1}{a}\frac{\Delta A}{\Delta t} = -\frac{1}{b}\frac{\Delta B}{\Delta t} = \frac{1}{c}\frac{\Delta C}{\Delta t} = \frac{1}{d}\frac{\Delta D}{\Delta t}$$

Note the use of a negative sign denotes a decrease in the concentration of a reactant with time, and a positive sign denotes the increase in the concentration of a product with time.

EXERCISES

A. Consider the reaction:

 $N_{2~(g)} \textbf{+} \textbf{3} \text{ } \textbf{H}_{2~(g)} \rightarrow \textbf{2} \text{ } \textbf{N}\textbf{H}_{3~(g)}$

Fill in the blanks:

- 1) For every molecule of N₂ that reacts, $____{\#}$ molecules of H₂ react.
- 2) Hydrogen is disappearing ______ as fast as the nitrogen.
- 3) For every molecule of N₂ that reacts, $____{\#}$ molecules of NH₃ are formed.
- 4) The rate at which NH₃ is formed is _______ as fast as the rate at which how many times ?______ as fast as the rate at which the N₂ disappears.
- B. Consider the following equation:

4 NH₃ (g) + 5 O₂ (g) \rightarrow 4 NO (g) + 6 H₂O (g)

Suppose that at a particular moment, the ammonia is reacting at a rate of 0.24 mol $L^{-1}s^{-1}$.

- 1) Write the rate expression for this reaction.
- 2) What is the rate at which oxygen is reacting?
- 3) What is the rate at which NO is being formed?
- 4) What is the rate at which H₂O is being formed?

SOLUTIONS

A. (1) three (2) three times (3) two (4) twice B. (1) $-\frac{1}{4}\frac{\Delta[NH_3]}{\Delta t} = -\frac{1}{5}\frac{\Delta[O_2]}{\Delta t} = \frac{1}{4}\frac{\Delta[NO]}{\Delta t} = \frac{1}{6}\frac{\Delta[H_2O]}{\Delta t}$ (2) 0.30 ^M/_s (3) 0.24 ^M/_s (4) 0.36 ^M/_s

