Rates of Reaction

Consider the decomposition of dinitrogen pentoxide:

$$
\underset{\substack{\text { dinitrogen } \\ \text { pentoxide }}}{2 \mathrm{~N}_{2} \mathrm{O}_{5}} \rightarrow \underset{\substack{\text { nitrogen } \\ \text { dioxide }}}{4 \mathrm{NO}_{2}}+\underset{\text { oxygen }}{\mathrm{O}_{2}}
$$

Suppose the average rate of change in $\mathrm{N}_{2} \mathrm{O}_{5}$ concentration per second was determined to be $-1.36 \times 10^{-3} \mathrm{~m} / \mathrm{s}$ at a particular moment:

$$
\frac{\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=-1.36 \times 10^{-3} \mathrm{M} / \mathrm{s}
$$

Since 4 mol NO_{2} are produced for every 2 mol of $\mathrm{N}_{2} \mathrm{O}_{5}$ used, the average rate of formation of NO_{2} would be:

$$
\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}}=\left(\frac{4}{2}\right)\left(1.36 \times 10^{-3} \mathrm{M} / \mathrm{s}\right)=2.72 \times 10^{-3} \mathrm{~m} / \mathrm{s}
$$

Since $1 \mathrm{~mol} \mathrm{O}_{2}$ is produced for every $2 \mathrm{~mol}_{2} \mathrm{O}_{5}$ that react, the average rate of formation of O_{2} would be:

$$
\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}=\left(\frac{1}{2}\right)\left(1.36 \times 10^{-3} \mathrm{~m} / \mathrm{s}\right)=6.80 \times 10^{-4} \mathrm{~m} / \mathrm{s}
$$

The average rate of reaction could also be written:

$$
-\frac{1}{2} \frac{\Delta[\mathrm{~N} 2 \mathrm{O} 5]}{\Delta \mathrm{t}}=\frac{1}{4} \frac{\Delta[\mathrm{NO} 2]}{\Delta \mathrm{t}}=\frac{\Delta[\mathrm{O} 2]}{\Delta \mathrm{t}}=6.80 \times 10^{-4} \mathrm{~m} / \mathrm{s}
$$

Note: The units M / s could also be written as $\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}, \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ or $\mathrm{M} \mathrm{s}^{-1}$.
In general, for the reaction:

$$
a \mathrm{~A}+b \mathrm{~B} \rightarrow c \mathrm{C}+d \mathrm{D}
$$

the rate of reaction is defined by:

$$
\text { rate }=-\frac{1}{a} \frac{\Delta \mathrm{~A}}{\Delta \mathrm{t}}=-\frac{1}{b} \frac{\Delta \mathrm{~B}}{\Delta \mathrm{t}}=\frac{1}{c} \frac{\Delta \mathrm{C}}{\Delta \mathrm{t}}=\frac{1}{d} \frac{\Delta \mathrm{D}}{\Delta \mathrm{t}}
$$

Note the use of a negative sign denotes a decrease in the concentration of a reactant with time, and a positive sign denotes the increase in the concentration of a product with time.

EXERCISES

A. Consider the reaction:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Fill in the blanks:

1) For every molecule of N_{2} that reacts, \qquad molecules of H_{2} react.
2) Hydrogen is disappearing \qquad as fast as the nitrogen.
3) For every molecule of N_{2} that reacts, \qquad molecules of NH_{3} are formed.
4) The rate at which NH_{3} is formed is \qquad as fast as the rate at which the N_{2} disappears.
B. Consider the following equation:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Suppose that at a particular moment, the ammonia is reacting at a rate of $0.24 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.

1) Write the rate expression for this reaction.
2) What is the rate at which oxygen is reacting?
3) What is the rate at which NO is being formed?
4) What is the rate at which $\mathrm{H}_{2} \mathrm{O}$ is being formed?

SOLUTIONS

A. (1) three (2) three times (3) two (4) twice
B. (1) $-\frac{1}{4} \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t}=-\frac{1}{5} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=\frac{1}{4} \frac{\Delta[\mathrm{NO}]}{\Delta t}=\frac{1}{6} \frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{\Delta t}$
(2) $0.30 \mathrm{~m} / \mathrm{s}$
(3) $0.24 \mathrm{M} / \mathrm{s}$
(4) $0.36 \mathrm{M} / \mathrm{s}$

