Molecular, Ionic & Net Ionic Equations

MOLECULAR EQUATIONS

In a **molecular equation**, all the reactants and products are written as if they were molecules. Precipitates and gases are indicated with the appropriate symbols (see the *General* section below).

Unstable compounds which appear as products are written in their more stable forms. Some common unstable compounds (molecules to the left of reaction arrow) are listed below. If the product to the left of an arrow is formed, it will decompose to the more stable molecules shown to the right of the reaction arrow.

 $\label{eq:H2CO3} H_2O + CO_2 \uparrow \qquad \qquad H_2SO_3 \rightarrow H_2O + SO_2 \uparrow \qquad NH_4OH \rightarrow H_2O + NH_3 \uparrow$

IONIC EQUATIONS

In an **ionic equation**, substances are shown as they occur in solution. A solubility table should be consulted to determine a substance's solubility. Soluble substances occur as ions in solution.

Strong electrolytes are shown as being dissociated in water.

```
Examples: HCl, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> (dissociates as 2 H<sup>+</sup>, not H<sub>2</sub><sup>+</sup>!), NaOH, KOH
```

Weak electrolytes, precipitates and gases are written in their molecular form. Examples:

Weak electrolytes: H_2O , $HC_2H_3O_2$, $H_2C_2O_4$, H_3PO_4 Precipitates:Consult a solubility table.Gases: $CO_2\uparrow$, $SO_2\uparrow$, $NH_3\uparrow$

NET IONIC EQUATIONS

The **net ionic equation** only includes those substances and ions in the ionic equation that have undergone a chemical change. **Spectator ions**, which don't change over the reaction, don't appear in net ionic equations.

GENERAL

- \rightarrow Equations must be balanced, both in atoms and in electrical charge.
- → Gases must be indicated using an up-arrow " \uparrow " or with "(g)".
- → Precipitates must be indicated using a down-arrow " \downarrow " or with "(s)".
- \rightarrow lons may be indicated with "_(aq)" for "aqueous".
- \rightarrow If no reaction occurs, write "no reaction" as the right side of the equation.
- \rightarrow Consult a table of ions to get the correct symbols and charges.

- *Example 1:* Write correct molecular, ionic and net ionic equations for the following: 1) NaC $\ell_{(aq)}$ + AgNO_{3 (aq)} \rightarrow _____
 - 2) Na₂CO₃ + HC $\ell \rightarrow$ _____
- Solution: 1) Molecular: $NaCl_{(aq)} + AgNO_{3 (aq)} \rightarrow AgCl_{(s)} + NaNO_{3 (aq)}$ Ionic: $Na^{+}_{(aq)} + Cl^{-}_{(aq)} + Ag^{+}_{(aq)} + NO_{3}^{-}_{(aq)} \rightarrow AgCl_{(s)} + Na^{+}_{(aq)} + NO_{3}^{-}_{(aq)}$ Since the sodium and nitrate ions are on both sides: Net Ionic: $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$
 - 2) When balanced, the double displacement reaction is: Na₂CO₃ + 2 HC $\ell \rightarrow$ 2 NaC ℓ + H₂CO₃ But H₂CO₃ is unstable, so: **Molecular:** Na₂CO₃ + 2 HC $\ell \rightarrow$ 2 NaC ℓ + H₂O + CO₂↑ **Ionic:** 2 Na⁺ + CO₃⁻ + 2 H⁺ + 2 C $\ell^{-} \rightarrow$ 2 Na⁺ + 2 C ℓ^{-} + H₂O + CO₂↑ Since the sodium and chlorine ions are spectators: **Net Ionic:** 2 H⁺ + CO₃⁻ \rightarrow H₂O + CO₂↑

EXERCISES

- A. Write correct molecular, ionic and net ionic equations for the following:
 - 1) NaBr + AgNO3 \rightarrow 6) Na2SO4 + BaCl2 \rightarrow 2) ZnSO4 + BaCl2 \rightarrow 7) Ca(NO3)2 + (NH4)2CO3 \rightarrow 3) CuCl2 + Pb(NO3)2 \rightarrow 8) (NH4)2SO4 + LiNO3 \rightarrow 4) NaCl + KNO3 \rightarrow 9) Na2CO3 + HBr \rightarrow 5) NaC2H3O2 + HCl \rightarrow 10) NaOH + HCl \rightarrow

SOLUTIONS

A. (1) M: NaBr + AgNO₃ \rightarrow NaNO₃ + AgBr \downarrow ; I: Na⁺ + Br⁻ + Ag⁺ + NO₃⁻ \rightarrow Na⁺ + NO₃⁻ + AgBr \downarrow ; NI: Ag⁺ + Br⁻ \rightarrow AgBr \downarrow (2) M: ZnSO₄ + BaCla \rightarrow ZnCla + BaSO₄(1:1: Zn²⁺ + SO₄²⁻ + Ba²⁺ + 2 Cl⁻ \rightarrow Zn²⁺ +

(2) M: ZnSO₄ + BaCl₂ \rightarrow ZnCl₂ + BaSO₄ \downarrow ; I: Zn²⁺ + SO₄²⁻ + Ba²⁺ + 2 Cl⁻ \rightarrow Zn²⁺ + 2 Cl⁻ + BaSO₄ \downarrow ; NI: Ba²⁺ + SO₄²⁻ \rightarrow BaSO₄ \downarrow

(3) M: CuCl₂ + Pb(NO₃)₂ \rightarrow Cu(NO₃)₂ + PbCl₂ \downarrow ; I: Cu²⁺ + 2 Cl⁻ + Pb²⁺ + 2 NO₃⁻ \rightarrow Cu²⁺ + 2 NO₃⁻ + PbCl₂ \downarrow ; NI: Pb²⁺ + 2 Cl⁻ \rightarrow PbCl₂ \downarrow

(4) M: NaC ℓ + KNO₃ \rightarrow *no reaction*

(5) M: NaC₂H₃O₂ + HC $\ell \rightarrow$ NaC ℓ + HC₂H₃O₂; I: Na⁺ + C₂H₃O₂⁻ + H⁺ + C $\ell^- \rightarrow$ Na⁺ + C ℓ^- + HC₂H₃O₂; NI: H⁺ + C₂H₃O₂⁻ \rightarrow HC₂H₃O₂

(6) M: Na₂SO₄ + BaCl₂ \rightarrow 2 NaCl + BaSO₄ \downarrow ; I: 2 Na⁺ + SO₄²⁻ + Ba²⁺ + 2 Cl⁻ \rightarrow 2 Na⁺ + 2 Cl⁻ + BaSO₄ \downarrow ; NI: Ba²⁺ + SO₄²⁻ \rightarrow BaSO₄ \downarrow

(7) M: Ca(NO₃)₂ + (NH₄)₂CO₃ \rightarrow CaCO₃ \downarrow + 2 NH₄NO₃; I: Ca²⁺ + 2 NO₃⁻ + 2 NH₄⁺ + CO₃²⁻ \rightarrow CaCO₃ \downarrow + 2 NH₄⁺ + 2 NO₃⁻; NI: Ca²⁺ + CO₃²⁻ \rightarrow CaCO₃ \downarrow

(8) M: $(NH_4)_2SO_4 + LiNO_3 \rightarrow no \ reaction$

(9) M: Na₂CO₃ + 2 HBr \rightarrow 2 NaBr + H₂O + CO₂ \uparrow ; I: 2 Na⁺ + CO₃²⁻ + 2 H⁺ + 2 Br⁻ \rightarrow 2 Na⁺ + 2 Br⁻ + H₂O + CO₂ \uparrow ; NI: 2 H⁺ + CO₃²⁻ \rightarrow H₂O + CO₂ \uparrow

(10) M: NaOH + HCl \rightarrow NaCl + H₂O; I: Na⁺ + OH⁻ + H⁺ + Cl⁻ \rightarrow Na⁺ + Cl⁻ + H₂O; NI: H⁺ + OH⁻ \rightarrow H₂O

