Molarity Problems

FORMULAS

$$
\text { Molarity: } \mathrm{M}=\frac{\text { moles of solute }}{\text { litres of solution }}(\mathrm{mol} / \mathrm{L})
$$

Dilution problems: $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
Molar mass: $\mathrm{n}=\frac{\mathrm{m}}{\mathrm{MW}}$, where $\mathrm{n}=$ number of moles

$$
\begin{aligned}
\mathrm{m} & =\text { mass } \\
\mathrm{MW} & =\text { molecular weight }(9 / \mathrm{mol})
\end{aligned}
$$

Example 1: Determine the molarity of 3.72 moles of NaBr in 575 mL of solution.
Solution: $\quad[\mathrm{NaBr}]=\frac{3.72 \mathrm{~mol}}{0.575 \mathrm{~L}}=6.47 \mathrm{~mol} / \mathrm{L}$
Example 2: How many millilitres of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(16.0 \mathrm{M})$ is required to prepare 250 mL of $6.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

Solution: desired: $\mathrm{M}_{1}=6.00 \mathrm{M} ; \mathrm{V}_{1}=250 \mathrm{~mL}$
on hand: $\mathrm{M}_{2}=16.0 \mathrm{M} ; \mathrm{V}_{2}=$?
$V_{2}=\frac{M_{1} V_{1}}{M_{2}}=\frac{(6.00 \mathrm{M})(250 \mathrm{~mL})}{16.0 \mathrm{M}}=93.8 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$
Example 3: 15.32 mL of 0.5250 M HCl is required to titrate 17.50 mL of a NaOH solution. Determine the concentration of the NaOH solution.

Solution: Because we have a titration, we need the formula equation for the reaction:

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

moles of acid: $0.5250 \mathrm{~mol} \mathrm{~L} \times\left(15.32 \times 10^{-3} \mathrm{~L}\right)=8.043 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$ $8.043 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$ reacts with $8.043 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$
concentration (molarity): $\frac{8.043 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}}{1.750 \times 10^{-2} \mathrm{~L} \mathrm{NaOH}}=0.4596 \mathrm{~mol} / \mathrm{L}$

EXERCISES

A. Determine the molarity of a solution containing 2.58 mol NaCl in 455 mL of solution.
B. Determine the number of moles of KOH present in 95.0 mL of 0.255 M solution.
C. 12.5 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in water to make 325 mL of solution. What is the concentration?
D. What volume of $0.500 \mathrm{M} \mathrm{BaCl}_{2}$ will contain 16.2 g BaCl ?
E. How many grams of BaCl_{2} will be required to prepare 185 mL of 0.675 M solution?
F. Determine the concentration of the following solutions when mixed:

1) $150 \mathrm{~mL} 0.550 \mathrm{M} \mathrm{HCl}+250 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
2) $100 \mathrm{~mL} 0.500 \mathrm{M} \mathrm{HCl}+100 \mathrm{~mL} 0.750 \mathrm{M} \mathrm{HCl}$
3) $300 \mathrm{~mL} 0.500 \mathrm{M} \mathrm{HCl}+200 \mathrm{~mL} 0.750 \mathrm{M} \mathrm{HCl}$
G. What volume of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(18.0 \mathrm{M})$ is required to prepare 550 mL of 4.00 $\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
H. How much water must be added to 625 mL of solution containing $27.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ to make the final solution 0.325 M ?
I. Consider the reaction:

$$
\mathrm{BaCl}_{2}+\mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{BaCrO}_{4} \downarrow+2 \mathrm{KCl}
$$

1) How many grams of barium chromate can be obtained from 75.0 mL of 0.150 M BaCl_{2} solution?
2) What volume of $0.500 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ solution is required to react with the 75.0 mL of $0.150 \mathrm{M} \mathrm{BaCl} l_{2}$ solution?
J. 15.3 mL of 0.100 M NaOH is required to titrate 15.0 mL of a HCl solution. Determine the concentration of the HCl solution.
K. What volume of 0.325 M NaOH is required to titrate 25.7 mL of 0.462 M HCl ?
L. Consider the reaction:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

1) 15.2 mL of 0.425 M NaOH solution is required to neutralize 25.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Determine the concentration of the sulphuric acid solution.
2) What volume of 0.425 M NaOH is required to neutralize 12.5 mL of 0.275 M $\mathrm{H}_{2} \mathrm{SO}_{4}$?

SOLUTIONS

A. 5.67 M
B. $2.42 \times 10^{-2} \mathrm{mo}$
C. 0.363 M
D. 156 mL
E. 26.0 g
F. (1) 0.206 M
(2) 0.625 M
(3) 0.600 M
G. 122 mL
H. 228 mL
I. (1) 2.85 g
(2) 22.5 mL
J. 0.102 M
K. 36.5 mL
L. (1) 0.129 M
(2) 16.2 mL

