Word Equations

In a chemical equation, substances are represented by their chemical formulas. In a word equation, substances are represented in words, using the proper nomenclature. An arrow (\rightarrow) shows the progression from reactants to products. The Δ symbol in $\xrightarrow{\Delta}$ means that heat must be applied to initiate the reaction. A plus sign (+) is used to separate one reactant (or product) from another.

Example 1: Write as a word equation: $4 \mathrm{Al}+3 \mathrm{O}_{2} \xrightarrow{\Delta} 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
Solution: aluminum + oxygen $\xrightarrow{\text { heat }}$ aluminum oxide
Note that we do not need to include coefficients in a word equation.

EXERCISES

Express the following chemical equations as word equations:
** In the case of any chemicals that have different names in gas form versus aqueous form, assume the reaction is happening in aqueous solution.**

1) $\mathrm{C}+\mathrm{O}_{2} \xrightarrow{\Delta} \mathrm{CO}_{2}$
2) $2 \mathrm{Ba}+\mathrm{O}_{2} \xrightarrow{\Delta} 2 \mathrm{BaO}$
3) $2 \mathrm{Cu}+\mathrm{S} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}$
4) $2 \mathrm{P}+3 \mathrm{I}_{2} \rightarrow 2 \mathrm{PI}_{3}$
5) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \xrightarrow{\Delta} 2 \mathrm{H}_{2} \mathrm{O}$
6) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
7) $\mathrm{FeCl}_{3}+3 \mathrm{KOH} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{KCl}$
8) $2 \mathrm{Al}+3 \mathrm{CuSO}_{4} \rightarrow 3 \mathrm{Cu}+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
9) $3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$
10) $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$
11) $\mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
12) $2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
13) $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
14) $2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$

SOLUTIONS

(1) carbon + oxygen $\xrightarrow{\text { heat }}$ carbon dioxide
(2) barium + oxygen $\xrightarrow{\text { heat }}$ barium oxide
(3) copper + sulphur \rightarrow copper (I) sulphide
(4) phosphorus + iodine \rightarrow phosphorus triiodide
(5) hydrogen + oxygen $\xrightarrow{\text { heat }}$ water
(6) acetic acid + sodium hydroxide \rightarrow sodium acetate + water
(7) iron (III) chloride + potassium hydroxide \rightarrow iron (III) hydroxide + potassium chloride
(8) aluminum + copper (II) sulphate \rightarrow copper + aluminum sulphate
(9) calcium hydroxide + phosphoric acid \rightarrow calcium phosphate + water
(10) potassium + water \rightarrow potassium hydroxide + hydrogen
(11) iron (III) oxide + hydrochloric acid \rightarrow iron (III) chloride + water
(12) sodium bicarbonate + sulphuric acid \rightarrow sodium sulphate + water + carbon dioxide
(13) zinc + sulphuric acid \rightarrow zinc sulphate + hydrogen
(14) aluminum + hydrochloric acid \rightarrow aluminum chloride + hydrogen

