## Double Replacement Reactions

A double replacement reaction has the form:

$$
A B+C D \rightarrow A D+C B
$$

There are four different possible outcomes to a reaction such as this:
[1] Formation of a gas. There are certain compounds which are unstable and decompose to water and a gas. Three common ones are $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{3}$ and $\mathrm{NH}_{4} \mathrm{OH}$. They decompose like this:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2(\mathrm{~g})} \\
\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{SO}_{2(\mathrm{~g})} \\
\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NH}_{3}(\mathrm{~g})
\end{gathered}
$$

When any of these three compounds appears as a product, write the decomposed form instead.
[2] Formation of a slightly ionized compound. Look for compounds like $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (acetic acid), $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid) or $\mathrm{H}_{3} \mathrm{PO}_{4}$ as products. Heat release is the evidence of the formation of these compounds. Any of these compounds should be marked as "(l)".
[3] Formation of a precipitate. Consult the solubility table on page 61-62 in the Chem 061/071 Lab Manual or the User-Friendly Solubility Table from the Learning Centre. "Low solubility" means that very little of the substance dissolves in water, so most of it forms as a precipitate, and should be marked "(s)". "Soluble" means that the ions will stay in solution.
[4] There is no reaction. None of the above happens, probably because the ions all stay in solution.

Example 1: Complete and balance the following equation, if a reaction occurs: $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow$ ?

Solution: [1] Determine what ions are formed. Consult a list of ions if necessary. The ions in this case are $\mathrm{Na}^{+}\left(n o t \mathrm{Na}_{2}{ }^{+}\right), \mathrm{CO}_{3}{ }^{2-}, \mathrm{H}^{+}$, and $\mathrm{Cl}^{-}$.
[2] Form the hypothetical products. Take into account the valences of the ions involved. The products here would be NaCl and $\mathrm{H}_{2} \mathrm{CO}_{3}$.
[3] Look for precipitates, slightly ionized compounds and unstable compounds on the product side. We want to make sure that a reaction will actually occur before we do too much work! In this case, NaCl is soluble and so is $\mathrm{H}_{2} \mathrm{CO}_{3}$, but $\mathrm{H}_{2} \mathrm{CO}_{3}$ is unstable, so there will be a reaction.
[4] Write the double replacement equation, if there is a reaction.

The equation is $\mathrm{Na}_{2} \mathrm{CO}_{3}($ aq $)+\mathrm{HCl}{ }_{(\text {aq })} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{CO}_{3}$.
[5] Balance the equation, then adjust it for unstable compounds and gases. It's easier to do it this way than to break down the gases and balance it afterwards.
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{CO}_{3}$ which becomes:
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2}(\mathrm{~g})$
Example 2: Complete and balance the following equation, if a reaction occurs:
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow$ ?
Solution: We'll use the same steps as in Example 1.
[1] Determine what ions are formed.
$\mathrm{Na}^{+}, \mathrm{OH}^{-}, \mathrm{H}^{+}, \mathrm{Cl}^{-}$.
[2] Form the hypothetical products.
NaCl and $\mathrm{H}_{2} \mathrm{O}$.
[3] Look for precipitates, slightly ionized compounds and unstable compounds on the product side.
NaCl is soluble. $\mathrm{H}_{2} \mathrm{O}$ is a slightly ionized compound, so a reaction will occur.
[4] Write the double replacement equation, if there is a reaction. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}{ }_{(1)}$
[5] Balance the equation, then adjust it for unstable compounds and gases.
It's balanced as it stands, so we're done.
Example 3: Complete and balance the following equation, if a reaction occurs: $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow$ ?

Solution: [1] Determine what ions are formed.
$\mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{Ag}^{+}, \mathrm{NO}_{3}{ }^{-}$.
[2] Form the hypothetical products.
$\mathrm{NaNO}_{3}$ and AgCl .
[3] Look for precipitates, slightly ionized compounds and unstable compounds on the product side.
$\mathrm{NaNO}_{3}$ is soluble, but AgCl has low solubility, so a reaction will occur.
[4] Write the double replacement equation, if there is a reaction. $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s})$
[5] Balance the equation, then adjust it for unstable compounds and gases.
It's balanced as it stands, so we're done.

Example 4: Complete and balance the following equation, if a reaction occurs: $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow$ ?

Solution: [1] Determine what ions are formed.
$\mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{K}^{+}, \mathrm{NO}_{3}{ }^{-}$.
[2] Form the hypothetical products.
$\mathrm{NaNO}_{3}$ and KCl .
[3] Look for precipitates, slightly ionized compounds and unstable compounds on the product side.
$\mathrm{NaNO}_{3}$ and KCl are both soluble, so no reaction will occur. We can stop at this step, since these ions will stay in solution.

## EXERCISES

Complete and balance the following equations, if a reaction occurs:

1) $\quad \mathrm{BaCl}_{2(\mathrm{aq})}+\quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$
2) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\quad \mathrm{HCl}(\mathrm{aq}) \rightarrow$
3) $\quad \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\quad \mathrm{HCl}(\mathrm{aq}) \rightarrow$
4) $\quad \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$
5) $\quad \mathrm{BiCl}_{3(\mathrm{aq})}+\quad \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{aq})} \rightarrow$
6) $\quad \mathrm{SrS}(\mathrm{aq})+\mathrm{FrClO}_{3}(\mathrm{aq}) \rightarrow$
7) $\quad \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+\quad \mathrm{HCl}(\mathrm{aq}) \rightarrow$
8) $\quad \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow$
9) $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq})+\quad \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow$
10) $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3(\mathrm{aq})}+\quad \mathrm{CaCl}_{2(\mathrm{aq})} \rightarrow$
11) $\mathrm{MgI}_{2(\mathrm{aq})}+\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq}) \rightarrow$
12) $\mathrm{KOH}_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow$
13) $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+\quad \mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow$
14) $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+\quad \mathrm{KOH}($ aq) $\rightarrow$

## SOLUTIONS

(1) $\mathrm{BaCl}_{2 \text { (aq) }}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq) $\rightarrow \mathrm{BaSO}_{4}$ (s) $+2 \mathrm{HCl}_{\text {(aq) }}$
(2) $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}\left(\right.$ aq) $\rightarrow 2 \mathrm{NaCl}_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\text {(l) }}+\mathrm{CO}_{2}$ (g)
(3) $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }_{\text {(aq) }}+\mathrm{HCl}{ }_{\text {(aq) }} \rightarrow \mathrm{NaCl}{ }_{\text {(aq) }}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (1)
(4) $\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3(\mathrm{aq})}+\mathrm{PbCrO}_{4}$ (s)
(5) $2 \mathrm{BiCl}_{3(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{aq})} \rightarrow \mathrm{Bi}_{2} \mathrm{~S}_{3 \text { (s) }}+6 \mathrm{HCl}{ }_{\text {(aq) }}$
(6) no reaction
(7) $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{HCl}\left({ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{KCl}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{l})\right.$
(8) $2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$
(9) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}{ }_{(\text {(aq) }}+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2}(\mathrm{~g})$
(10) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq) }}+\mathrm{CaCO}_{3}$ (s)
(11) no reaction
(12) $3 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
(13) $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s})$
(14) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}{ }_{(\text {aq })}+2 \mathrm{KOH}_{\text {(aq) }} \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{K}_{2} \mathrm{SO}_{4}$ (aq)

