## **Double Replacement Reactions**



There are four different possible outcomes to a reaction such as this:

[1] **Formation of a gas.** There are certain compounds which are unstable and decompose to water and a gas. Three common ones are H<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>SO<sub>3</sub> and NH<sub>4</sub>OH. They decompose like this:

 $\begin{array}{l} H_2CO_3 \rightarrow H_2O \ \ (l) + CO_2 \ (g) \\ H_2SO_3 \rightarrow H_2O \ \ (l) + SO_2 \ (g) \\ NH_4OH \rightarrow H_2O \ \ (l) + NH_3 \ (g) \end{array}$ 

When any of these three compounds appears as a product, write the decomposed form instead.

[2] **Formation of a slightly ionized compound.** Look for compounds like H<sub>2</sub>O, HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (acetic acid), H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> (oxalic acid) or H<sub>3</sub>PO<sub>4</sub> as products. Heat release is the evidence of the formation of these compounds. Any of these compounds should be marked as "()".

[3] **Formation of a precipitate.** Consult the solubility table on page 61–62 in the Chem 061/071 Lab Manual or the User-Friendly Solubility Table from the Learning Centre. "Low solubility" means that very little of the substance dissolves in water, so most of it forms as a precipitate, and should be marked "(s)". "Soluble" means that the ions will stay in solution.

[4] **There is no reaction.** None of the above happens, probably because the ions all stay in solution.

- *Example 1:* Complete and balance the following equation, if a reaction occurs:  $Na_2CO_3 (aq) + HC\ell (aq) \rightarrow ?$
- Solution: [1] **Determine what ions are formed.** Consult a list of ions if necessary. The ions in this case are Na<sup>+</sup> (*not* Na<sub>2</sub><sup>+</sup>), CO<sub>3</sub><sup>2-</sup>, H<sup>+</sup>, and C $\ell^-$ .

[2] Form the hypothetical products. Take into account the valences of the ions involved. The products here would be NaC $\ell$  and H<sub>2</sub>CO<sub>3</sub>.

[3] Look for precipitates, slightly ionized compounds and unstable compounds on the product side. We want to make sure that a reaction will actually occur before we do too much work! In this case, NaC $\ell$  is soluble and so is H<sub>2</sub>CO<sub>3</sub>, but H<sub>2</sub>CO<sub>3</sub> is unstable, so there will be a reaction.

[4] Write the double replacement equation, if there is a reaction.





Authored by Gordon Wong

The equation is Na<sub>2</sub>CO<sub>3 (aq)</sub> + HC $\ell$  (aq)  $\rightarrow$  NaC $\ell$  + H<sub>2</sub>CO<sub>3</sub>.

[5] Balance the equation, then adjust it for unstable compounds and gases. It's easier to do it this way than to break down the gases and balance it afterwards.

Na<sub>2</sub>CO<sub>3</sub> + 2 HC $\ell \rightarrow$  2 NaC $\ell$  + H<sub>2</sub>CO<sub>3</sub> which becomes: Na<sub>2</sub>CO<sub>3</sub> + 2 HC $\ell \rightarrow$  2 NaC $\ell$  (aq) + H<sub>2</sub>O (I) + CO<sub>2</sub> (g)

- *Example 2:* Complete and balance the following equation, if a reaction occurs: NaOH + HC $\ell \rightarrow ?$
- Solution: We'll use the same steps as in Example 1. [1] **Determine what ions are formed.** Na<sup>+</sup>, OH<sup>-</sup>, H<sup>+</sup>, C $\ell$ <sup>-</sup>.

[2] Form the hypothetical products. NaCl and  $H_2O$ .

[3] Look for precipitates, slightly ionized compounds and unstable compounds on the product side.

NaC $\ell$  is soluble. H<sub>2</sub>O is a slightly ionized compound, so a reaction will occur.

[4] Write the double replacement equation, if there is a reaction. NaOH + HCl  $\rightarrow$  NaCl (aq) + H2O (I)

[5] Balance the equation, then adjust it for unstable compounds and gases.

It's balanced as it stands, so we're done.

- *Example 3:* Complete and balance the following equation, if a reaction occurs: NaC $\ell$  + AgNO<sub>3</sub>  $\rightarrow$  ?
- Solution: [1] Determine what ions are formed. Na<sup>+</sup>,  $C\ell^-$ ,  $Ag^+$ ,  $NO_3^-$ .

[2] Form the hypothetical products. NaNO $_3$  and AgC $\ell$ .

[3] Look for precipitates, slightly ionized compounds and unstable compounds on the product side.

NaNO<sub>3</sub> is soluble, but AgCl has low solubility, so a reaction will occur.

[4] Write the double replacement equation, if there is a reaction. NaCl + AgNO<sub>3</sub>  $\rightarrow$  NaNO<sub>3</sub> (aq) + AgCl (s)

[5] Balance the equation, then adjust it for unstable compounds and gases.

It's balanced as it stands, so we're done.



- *Example 4:* Complete and balance the following equation, if a reaction occurs: NaC $\ell$  + KNO<sub>3</sub>  $\rightarrow$  ?
- Solution: [1] Determine what ions are formed. Na<sup>+</sup>,  $C\ell^-$ , K<sup>+</sup>, NO<sub>3</sub><sup>-</sup>.

[2] Form the hypothetical products. NaNO $_3$  and KC $\ell$ .

## [3] Look for precipitates, slightly ionized compounds and unstable compounds on the product side.

NaNO<sub>3</sub> and KC $\ell$  are both soluble, so no reaction will occur. We can stop at this step, since these ions will stay in solution.

## EXERCISES

Complete and balance the following equations, if a reaction occurs:

1)  $BaCl_{2(aq)} +$  $H_2SO_4 (aq) \rightarrow$ 2) Na<sub>2</sub>CO<sub>3 (aq)</sub> +  $HCl_{(aq)} \rightarrow$ 3)  $NaC_2H_3O_2 (aq) + HC\ell (aq) \rightarrow$ 4)  $K_2CrO_4 (aq) + Pb(NO_3)_2 (aq) \rightarrow$ 5) BiC $\ell_{3 (aq)}$  + H<sub>2</sub>S (aq)  $\rightarrow$ 6) SrS (aq) +  $FrClO_3 (aq) \rightarrow$ 7) K<sub>2</sub>C<sub>2</sub>O<sub>4 (aq)</sub> +  $HC\ell_{(aq)} \rightarrow$ 8) H<sub>3</sub>PO<sub>4 (aq)</sub> +  $Ca(OH)_{2 (aq)} \rightarrow$ 9) (NH4)2CO3 (aq) + HNO<sub>3 (aq)</sub>  $\rightarrow$ 



This work is licensed under a Creative Commons Attribution 4.0 International License

$$(NH_4)_2CO_3 (aq) + CaC\ell_2 (aq) \rightarrow$$

- 11) MgI<sub>2 (aq)</sub> + Ca(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2 (aq)</sub>  $\rightarrow$
- 12) KOH (aq) + H<sub>3</sub>PO<sub>4</sub> (aq)  $\rightarrow$
- 13) Na<sub>2</sub>C<sub>2</sub>O<sub>4 (aq)</sub> + CaC $\ell_{2 (aq)} \rightarrow$
- 14)  $(NH_4)_2SO_4 (aq) + KOH (aq) \rightarrow$

## SOLUTIONS

- (1)  $BaC\ell_{2 (aq)} + H_2SO_{4 (aq)} \rightarrow BaSO_{4 (s)} + 2 HC\ell_{(aq)}$
- (2) Na<sub>2</sub>CO<sub>3 (aq)</sub> + 2 HC $\ell$  (aq)  $\rightarrow$  2 NaC $\ell$  (aq) + H<sub>2</sub>O (I) + CO<sub>2 (g)</sub>
- (3) NaC<sub>2</sub>H<sub>3</sub>O<sub>2 (aq)</sub> + HC $\ell$  (aq)  $\rightarrow$  NaC $\ell$  (aq) + HC<sub>2</sub>H<sub>3</sub>O<sub>2 (I)</sub>
- (4) K<sub>2</sub>CrO<sub>4 (aq)</sub> + Pb(NO<sub>3</sub>)<sub>2 (aq)</sub>  $\rightarrow$  2 KNO<sub>3 (aq)</sub> + PbCrO<sub>4 (s)</sub>
- (5) 2 BiC $\ell_3$  (aq) + 3 H<sub>2</sub>S (aq)  $\rightarrow$  Bi<sub>2</sub>S<sub>3</sub> (s) + 6 HC $\ell$  (aq)
- (6) no reaction
- (7) K<sub>2</sub>C<sub>2</sub>O<sub>4 (aq)</sub> + 2 HC $\ell$  (aq)  $\rightarrow$  2 KC $\ell$  (aq) + H<sub>2</sub>C<sub>2</sub>O<sub>4 (l)</sub>
- (8) 2 H<sub>3</sub>PO<sub>4 (aq)</sub> + 3 Ca(OH)<sub>2 (aq)</sub>  $\rightarrow$  6 H<sub>2</sub>O (I) + Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2 (s)</sub>
- (9)  $(NH_4)_2CO_3 (aq) + 2 HNO_3 (aq) \rightarrow 2 NH_4NO_3 (aq) + H_2O (l) + CO_2 (g)$
- (10) (NH<sub>4</sub>)<sub>2</sub>CO<sub>3 (aq)</sub> + CaC $\ell_{2 (aq)} \rightarrow 2$  NH<sub>4</sub>C $\ell_{(aq)}$  + CaCO<sub>3 (s)</sub>
- (11) no reaction
- (12) 3 KOH (aq) + H<sub>3</sub>PO<sub>4</sub> (aq)  $\rightarrow$  K<sub>3</sub>PO<sub>4</sub> (aq) + 3 H<sub>2</sub>O (l)
- (13) Na<sub>2</sub>C<sub>2</sub>O<sub>4 (aq)</sub> + CaC $\ell_{2}$  (aq)  $\rightarrow$  2 NaC $\ell$  (aq) + CaC<sub>2</sub>O<sub>4</sub> (s)
- (14) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4 (aq)</sub> + 2 KOH (aq)  $\rightarrow$  2 NH<sub>3</sub> (g) + 2 H<sub>2</sub>O (l) + K<sub>2</sub>SO<sub>4 (aq)</sub>



This work is licensed under a Creative Commons Attribution 4.0 International License