## Algebraic Expressions \& Exponents

## VANCOUVER <br> COMMUNITY <br> COLLEGE

## ALGEBRAIC EXPRESSIONS

## Addition and Subtraction

Only like terms can be added or subtracted. Like terms have the same variable and exponent on the variable (e.g. 13, 5 , and 2 are like terms; $x, 3 x$, and $5 x$ are like terms; $5 x^{2}$ and $2 x^{2}$ are like terms.) To combine like terms: add or subtract the numerical coefficients and keep the variable part the same. No numerical coefficient in front of the variable means a coefficient of 1.

```
3x+3+4x+x
x..
= (3+4+1)x+3 \ldots...... add the numerical coefficients of the like terms
= 8x+3
```

Simplification involving brackets. To remove the brackets, use the following rules:

- (+) sign or no sign in front of the brackets: drop the brackets and copy the terms inside the brackets with signs unchanged. $\quad(-7 a+5 b-c)$ becomes $-7 a+5 b-c$
- (-) sign in front of the brackets: drop the brackets and change the sign of every term inside the brackets. $\quad-(-7 a+5 b-c)$ becomes $7 a-5 b+c$


## Multiplication and Division

- To find the product of two or more single terms (monomials), find the product of the numerical coefficients and multiply by the product of their variables.

```
5b (2b)
= (5 < 2) (b x b) ........obtain the products of the numerical coefficients and the variables
= 10\times b = 10b the polynomial by the monomial.
```

```
-2a (5a-3b)
```

-2a (5a-3b)
= (-2a) (5a) - (-2a) (3b) .......multiply each term by (-2a)
= (-2a) (5a) - (-2a) (3b) .......multiply each term by (-2a)
= -10a'2}+6a

```
= -10a'2}+6a
```

- To find the product of a polynomial (multiple terms) and a monomial, multiply each term of
- To find the product of two polynomials, multiply each term of the first polynomial by each term of the other polynomial and then simplify by combining like terms).

```
(a+2) (2a-3)
=a(2a-3)+2(2a-3) .............. by the second polynomial
= 2a}\mp@subsup{a}{}{2}-3a+4a-6\ldots\ldots\ldots\ldots\ldots..... carry out the multiplicatio
= 2a 2}+a-6\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots...... simplify
```

- To divide monomials, divide the numerical coefficients and the variables separately. Then multiply the answers.

$$
12 a b \div 6 b=\left(\frac{12}{6}\right)\left(\frac{a b}{b}\right)=2 a
$$

- To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

$$
(12 a+8) \div 4=\frac{12 a+8}{4}=\frac{12 a}{4}+\frac{8}{4}=3 a+2
$$

## Substitution and Evaluation

To evaluate an algebraic expression means taking a given value for the variable and plugging it in (substituting in for that variable) to find the value of the function would be.
Evaluate $\quad 5 x-2 y+5 \quad$ for $x=2, y=1$

$$
\begin{aligned}
& =5(2)-2(1)+5 \ldots \ldots \ldots \ldots . \text { replace } x \text { with } 2 \text { and } y \text { with } 1 \\
& =10-2+5=13
\end{aligned}
$$

## Practice Problems

Simplify:

1. $2 a+3 c+4 a+6 c$
2. $3 c-2 b+3 c^{2}-5 b$
3. $d-0.08 d$
4. $(a+3 c)-(1.5 a+6 c)$
5. $17 m-5 m-m$
6. $\left(r^{2}-2 r s+3 s^{2}\right)-\left(5 r^{2}+6 r s-7 s^{2}\right)$
7. $2 \mathrm{~d} \cdot 4 \mathrm{~d}$
8. $4(x+3)$
9. $m(y-7)$
10. $(5 x-4 y)(x+2 y)$
11. $15 a \div 3 a$
12. $20 \mathrm{ab} \div 4$
13. $\left(-27 x^{3}\right) \div(-3 x)$
14. $(32 m-24) \div 4$
15. $\left(15 c^{5}-25 c^{3}-10 c^{2}\right) \div\left(-5 c^{2}\right)$

Evaluate the following expressions (round answers to 2 decimal places):

1. $2 a b+3-2 c \quad$ for $a=3, b=2, c=1$
2. $\mathrm{FV}(1-\mathrm{rt}) \quad$ for $\mathrm{FV}=\$ 1500, r=0.125, t={ }^{300} / 365$
3. $\frac{2 N C}{P(n+1)}$ for $\mathrm{N}=42, \mathrm{C}=50, \mathrm{P}=1600, \mathrm{n}=0.025$
4. $\frac{I}{P t} \quad$ for $\mathrm{I}=120, \mathrm{P}=840, \mathrm{t}=0.75$
5. $\frac{F V}{1+r t} \quad$ for $\mathrm{FV}=\$ 1780, \mathrm{r}=0.095, \mathrm{t}={ }^{241} / 365$

## Solutions

Simplify:

1. $6 a+9 c$
2. $8 d^{2}$
3. 5 ab
4. $3 c^{2}+3 c-7 b$
5. $4 x+12$
6. 0.92 d
7. $m y-7 m$
8. $9 x^{2}$
9. $-0.5 a-3 c$
10. $5 x^{2}+6 x y-8 y^{2}$
11. $8 \mathrm{~m}-6$
12. 11 m
13. $-2 b^{2}-4 b+34$
14. $-4 r^{2}-8 r s+10 s^{2}$
15. 5
16. $-3 c^{3}+5 c+2$

Evaluate:

1. 13
2. $\$ 1,345.89$
3. 2.56
4. 0.19
5. $\$ 1,674.94$

## EXPONENTS

An exponent is a superscript number written to the right of a term or expression that indicates how many times to multiply that term or expression by itself. For example:

$$
\begin{gathered}
2^{5}=2 \times 2 \times 2 \times 2 \times 2=32 \\
(x+3)^{3}=(x+3) \cdot(x+3) \cdot(x+3)
\end{gathered}
$$

The parts of an exponential expression are shown below:

We read this equation as the power equals a number or base raised to the exponent.
The exponent laws, along with examples of how they work, are listed below:

1. $x^{m} \cdot x^{n}=x^{m+n}$
2. $x^{m} \div x^{n}=x^{m-n}$
$b^{8} \div b^{2}=b^{8-2}=b^{6}$
3. $\left(x^{m}\right)^{n}=x^{m n}$

$$
\left(x^{5}\right)^{2}=x^{10}
$$

4. $(x y)^{m}=x^{m} y^{m}$
$(7 a)^{2}=7^{2} a^{2}=49 a^{2}$
5. $\quad(x / y)^{m}=x^{m} / y^{m}$

$$
(x / y)^{2}=x^{2} / y^{2}
$$

6. $\mathbf{x}^{0}=1$
$5^{0}=1 ;\left(a^{2} b^{7} c^{12}\right)^{0}=1$
7. $x^{-m}=1 / x^{m}$ $x^{-2}=1 / x^{2} ; 3^{-2}=1 / 3^{2}=1 / 9$
8. $1 / x^{-m}=x^{m}$
$1 / x^{-2}=x^{2} ; 1 / 4^{-2}=4^{2}=16$
9. $(x / y)^{-n}=(y / x)^{n}$
$(2 / 3)^{-2}=(3 / 2)^{2}=3^{2} / 2^{2}=9 / 4$
10. $\frac{x^{-m}}{y^{-n}}=\frac{y^{n}}{x^{m}}$

## Notes:

a) $-2^{4} \neq(-2)^{4}$ If the negative sign is inside the bracket it means (-2) raised to the fourth, or $(-2)(-2)(-2)(-2)=16$. If the negative sign is outside, it means $-\left(2^{4}\right)$ or -16 .
b) If the base is a negative number with an even exponent, the power will be positive. If the base is a negative number with an odd exponent, the power will be negative. $(-3)^{3}=-27$; $(-3)^{2}=9$
c) If the exponent is a FRACTION, we can express the exponent in radical form:
$a^{1 / 3}=\sqrt[3]{a} ; \quad x^{2 / 5}=\sqrt[5]{x^{2}}$
d) The $y^{x}$ button on your calculator allows you to evaluate powers. Enter the base, $\mathrm{y}^{\mathrm{x}}$ and then the exponent to evaluate a power.

## Practice Problems

Simplify:

1. $(2 x)^{3}$
2. $(-3)^{4}$
3. $\frac{10 h^{2}}{5 h^{3}}$
4. $(3 x)^{0}$
5. $\frac{\mathrm{x}^{-2}}{\mathrm{x}^{-4}}$
6. $(1 / 6)^{-2}$
7. $\mathrm{m}^{7} \cdot \mathrm{~m}^{-3}$
8. $\left(\frac{1}{6}\right)^{5} \div\left(\frac{1}{6}\right)^{-3}$
9. $1.204^{5 / 12}$
10. $\left(4 \cdot 5 \cdot 6 x^{3}\right)^{1 / 3}$
11. $\frac{39 x y^{2} z^{0}}{3 x^{2} y^{3} z^{-4}}$
12. $5^{6} \cdot 5^{-2} \cdot 5$
13. $\left(-4 x^{2} y^{5}\right)^{-2}$
14. $\left(3 x^{4} y^{2} z^{-3}\right)\left(-2 x^{2} y^{-4} z^{-6}\right)$
15. $\left(\frac{2^{-2} x^{-2}}{x^{3}}\right)^{-2}\left(\frac{x y}{2^{-2}}\right)^{-3}$
16. $\frac{5^{9}}{5^{3}}$

## Solutions

1. $8 x^{3}$
2. 81
3. 1
4. 36
5. $\mathrm{m}^{4}$
6. 1.08
7. $4.93 x$
8. $5^{5}=3125$
9. $-6 x^{6} y^{-2} z^{-9}=-\frac{6 x^{6}}{y^{2} z^{9}}$
10. $5^{6}=15,625$
11. $2 h^{-1}=2 / h$
12. $\mathrm{x}^{2}$
13. $\left(\frac{1}{6}\right)^{8}$
14. $13 x^{-1} y^{-1} z^{4}=\frac{13 z^{4}}{x y}$
15. $1 / 16 x^{4} y^{10}$
16. $\frac{x^{7}}{4 y^{3}}$
