

Algebraic Expressions & Exponents

ALGEBRAIC EXPRESSIONS

Addition and Subtraction

Only *like terms* can be added or subtracted. *Like terms* have the same variable and exponent on the variable (e.g. 13, 5, and 2 are like terms; x, 3x, and 5x are like terms; $5x^2$ and $2x^2$ are like terms.) To combine like terms: add or subtract the *numerical coefficients* and keep the *variable part* the same. No numerical coefficient in front of the variable means a coefficient of 1.

3x + 3 + 4x + x..... the three terms with x's are like terms = (3 + 4 + 1)x + 3 add the *numerical* coefficients of the like terms = 8x + 3

Simplification involving brackets. To remove the brackets, use the following rules:

- (+) sign or no sign in front of the brackets: drop the brackets and copy the terms inside the brackets with signs unchanged.
 (-7a + 5b c) becomes -7a + 5b c
- (-) sign in front of the brackets: drop the brackets and change the sign of every term inside the brackets.
 -(-7a + 5b - c) becomes 7a - 5b + c

Multiplication and Division

- To find the product of two or more single terms (monomials), find the product of the *numerical* coefficients and multiply by the product of their variables.
 - 5b (2b)

= (5×2) (b × b)obtain the products of the *numerical* coefficients and the variables = $10 \times b^2 = 10b^2$

• To find the product of a polynomial (multiple terms) and a monomial, multiply each term of the polynomial by the monomial.

= (-2a)(5a) - (-2a)(3b).....multiply each term by (-2a)

$$= -10a^2 + 6ab$$

• To find the product of two polynomials, multiply each term of the first polynomial by each term of the other polynomial and then simplify by combining like terms).

```
(a + 2) (2a - 3) each term of the first polynomial is multiplied
= a(2a - 3) + 2(2a - 3) ..... by the second polynomial
= 2a^2 - 3a + 4a - 6 ..... carry out the multiplication
```

• To divide monomials, divide the numerical coefficients and the variables separately. Then multiply the answers.

12ab ÷ 6b =
$$(\frac{12}{6})(\frac{ab}{b}) = 2a$$

• To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

$$(12a + 8) \div 4 = \frac{12a + 8}{4} = \frac{12a}{4} + \frac{8}{4} = 3a + 2$$

Authored by Gordon Wong

Substitution and Evaluation

To evaluate an algebraic expression means taking a given value for the variable and plugging it in (substituting in for that variable) to find the value of the function would be.

Evaluate 5x - 2y + 5 for x = 2, y = 1= 5(2) - 2(1) + 5..... replace x with 2 and y with 1 = 10 - 2 + 5 = 13

Practice Problems

Si	nplify:		
1.	2a + 3c + 4a + 6c	9. m(y - 7)	
2.	$3c - 2b + 3c^2 - 5b$	10. $(5x - 4y)(x + 2y)$	
3.	d – 0.08d	11. 2(b - 2)(2b - 4) - 3(2b - 6)(b + 1)	
4.	(a + 3c) - (1.5a + 6c)	12. 15a ÷ 3a	
5.	17m – 5m – m	13. 20ab ÷ 4	
6.	$(r^2 - 2rs + 3s^2) - (5r^2 + 6rs - 7s^2)$	14. (−27x ³) ÷ (−3x)	
7.	2d · 4d	15. (32m – 24) ÷ 4	
8.	4(x + 3)	16. $(15c^5 - 25c^3 - 10c^2) \div (-5c^2)$	
Evaluate the following expressions (round answers to 2 decimal places):			
1.	2ab + 3 - 2c for a = 3, b = 2, c = 1		

2.	FV(1 - rt)	for FV = \$1500, r = 0.125, t = $\frac{300}{365}$
3.	$\frac{2NC}{P(n+1)}$	for N = 42, C = 50, P = 1600, n = 0.025
4.	$\frac{I}{Pt}$	for I = 120, P = 840, t = 0.75
5.	$\frac{FV}{1+rt}$	for FV = \$1780, r = 0.095, t = $^{241}/_{365}$

Solutions

Simplify:

1.	6a + 9c	7.	8d ²		13. 5ab
2.	3c ² + 3c - 7b	8.	4x + 12		14. 9x ²
3.	0.92d	9.	my 7m		15. 8m – 6
4.	-0.5a - 3c	10.	$5x^{2} + 6xy -$	- 8y²	16. −3c ³ + 5c + 2
5.	11m	11.	–2b² – 4b +	· 34	
6.	$-4r^2 - 8rs + 10s^2$	12.	5		
Εv	aluate: 1.13	2. \$1,345.89	3. 2.56	4. 0.19	5. \$1,674.94

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

EXPONENTS

An **exponent** is a superscript number written to the right of a term or expression that indicates how many times to multiply that term or expression by itself. For example:

$$2^{5} = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

(x + 3)³ = (x + 3) · (x + 3) · (x + 3)

The parts of an exponential expression are shown below:

N	
<u></u>	· 2 ^v / [\]
V JZ -	BASE

We read this equation as the power equals a number or base raised to the exponent.

The exponent laws, along with examples of how they work, are listed below:

1. $\mathbf{x}^m \cdot \mathbf{x}^n = \mathbf{x}^{m+n}$ $x^5 \cdot x^6 = x^{11}$: $10^a \cdot 10^b = 10^{a+b}$ $b^8 \div b^2 = b^{8-2} = b^6$ 2. $\mathbf{x}^{m} \div \mathbf{x}^{n} = \mathbf{x}^{m-n}$ $(x^5)^2 = x^{10}$ 3. $(x^m)^n = x^{mn}$ 4. $(\mathbf{x}\mathbf{y})^{\mathsf{m}} = \mathbf{x}^{\mathsf{m}} \mathbf{y}^{\mathsf{m}}$ $(7a)^2 = 7^2a^2 = 49a^2$ 5. $(x / y)^m = x^m / y^m$ $(x / y)^2 = x^2 / y^2$ $5^{0} = 1$: $(a^{2}b^{7}c^{12})^{0} = 1$ 6. $x^0 = 1$ 7. $x^{-m} = 1/x^{m}$ $x^{-2} = 1/x^2$: $3^{-2} = 1/3^2 = \frac{1}{3}$ $1/x^{-2} = x^{2} \cdot 1/4^{-2} = 4^{2} = 16$ 8. $1/x^{-m} = x^{m}$ $(2/3)^{-2} = (3/2)^2 = 3^2/2^2 = 9/4$ 9. $(x/y)^{-n} = (y/x)^{n}$ $\frac{\mathbf{x}^{-m}}{\mathbf{y}^{-n}} = \frac{\mathbf{y}^{n}}{\mathbf{x}^{m}}$ $\frac{x^{-2}}{y^{-3}} = \frac{y^3}{x^2} \cdot \frac{3^{-2}}{2^{-3}} = \frac{2^3}{3^2} = \frac{8}{9}$

Notes:

- a) $-2^4 \neq (-2)^4$ If the negative sign is inside the bracket it means (-2) raised to the fourth, or (-2)(-2)(-2)(-2) = 16. If the negative sign is outside, it means $-(2^4)$ or -16.
- b) If the base is a negative number with an even exponent, the power will be positive. If the base is a negative number with an odd exponent, the power will be negative. $(-3)^3 = -27$; $(-3)^2 = 9$
- c) If the exponent is a FRACTION, we can express the exponent in radical form: $a^{1/3} = \sqrt[3]{a}$; $x^{2/5} = \sqrt[5]{x^2}$
- d) The y^x button on your calculator allows you to evaluate powers. Enter the base, y^x and then the exponent to evaluate a power.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Simplify:

1.	(2x) ³	11. $\frac{10h^2}{11}$
2.	$(-3)^4$	5h ³
3.	(3x) ⁰	12. $\frac{x^{-2}}{-4}$
4.	(1/6) ⁻²	X
5.	$m^7 \cdot m^{-3}$	$13. \left(\frac{1}{6}\right)^5 \div \left(\frac{1}{6}\right)^{-3}$
6.	1.204 ^{5/12}	$\frac{39xy^2z^0}{14}$
7.	$(4.5.6x^3)^{1/3}$	$3x^2y^3z^{-4}$
8.	$5^{6} \cdot 5^{-2} \cdot 5$	15. $(-4x^2y^5)^{-2}$
9.	$(3x^4y^2z^{-3})(-2x^2y^{-4}z^{-6})$	16 $\left(\frac{2^{-2}x^{-2}}{x^{-2}}\right)^{-2}\left(\frac{xy}{x^{-2}}\right)^{-3}$
10.	$\frac{5^9}{5^3}$	$\begin{pmatrix} x^3 \end{pmatrix} \begin{pmatrix} 2^{-2} \end{pmatrix}$
	•	

Solutions

1. 2. 3.	8x ³ 81 1	11. $2h^{-1} = \frac{2}{h}$ 12. x^{2} 13. $\left(\frac{1}{h}\right)^{8}$
4. 5. 6. 7. 8.	m^4 1.08 4.93x $5^5 = 3125$	14. $13x^{-1}y^{-1}z^4 = \frac{13z^4}{xy}$ 15. $\frac{1}{16}x^4y^{10}$
9. 10.	$-6x^{6}y^{-2}z^{-9} = -\frac{6x^{6}}{y^{2}z^{9}}$ 5 ⁶ = 15,625	16. $\frac{x^{4}}{4y^{3}}$

